S. Upadhyaya, T. Chaturvedi, P. Pandit, M. Vashishtha
{"title":"反胶束萃取废水中铜离子的实验与优化","authors":"S. Upadhyaya, T. Chaturvedi, P. Pandit, M. Vashishtha","doi":"10.30492/IJCCE.2021.521869.4488","DOIUrl":null,"url":null,"abstract":"In this study, the optimum conditions for different process parameters were determined for solvent extraction of copper ions from wastewater using reverse micelles. The process parameters viz. copper ion concentration, sodium bis-2-ethyl hexyl sulphosuccinate (AOT) concentration, solution pH, organic to aqueous phase volume ratio, and NaCl concentration were taken into consideration in response surface methodology, ranging from 30-150 mg/l, 0.04-0.2 [M], 3-11, 0.2-1.0, 0-4 g/100 ml respectively and their effect on percentage removal of copper ions were studied. A regression model was developed by conducting response surface methodology for the analysis of percentage removal of copper ions from wastewater. As many as fifty four experiments were procured from the design of experiments for the percentage removal of copper ions. The developed model was employed to optimize the process parameters being considered to maximize the response. The optimum conditions were found to be 30 mg/l copper ion concentration, 0.20 [M] AOT concentration, 3.12 pH, 0.57 organic to aqueous phase volume ratio, and 0.134 g/100 ml NaCl concentration. The obtained model was validated with experimental data and found to be best fitted within the tolerance limit. The effect of cross-interaction among the process parameters on the percentage removal of copper ions were also investigated. In this study, the copper ion concentration was analyzed by Atomic absorption spectroscopy (AAS).","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent Extraction of Copper Ions from Wastewater using Reverse Micelles: Experimental and Optimization\",\"authors\":\"S. Upadhyaya, T. Chaturvedi, P. Pandit, M. Vashishtha\",\"doi\":\"10.30492/IJCCE.2021.521869.4488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the optimum conditions for different process parameters were determined for solvent extraction of copper ions from wastewater using reverse micelles. The process parameters viz. copper ion concentration, sodium bis-2-ethyl hexyl sulphosuccinate (AOT) concentration, solution pH, organic to aqueous phase volume ratio, and NaCl concentration were taken into consideration in response surface methodology, ranging from 30-150 mg/l, 0.04-0.2 [M], 3-11, 0.2-1.0, 0-4 g/100 ml respectively and their effect on percentage removal of copper ions were studied. A regression model was developed by conducting response surface methodology for the analysis of percentage removal of copper ions from wastewater. As many as fifty four experiments were procured from the design of experiments for the percentage removal of copper ions. The developed model was employed to optimize the process parameters being considered to maximize the response. The optimum conditions were found to be 30 mg/l copper ion concentration, 0.20 [M] AOT concentration, 3.12 pH, 0.57 organic to aqueous phase volume ratio, and 0.134 g/100 ml NaCl concentration. The obtained model was validated with experimental data and found to be best fitted within the tolerance limit. The effect of cross-interaction among the process parameters on the percentage removal of copper ions were also investigated. In this study, the copper ion concentration was analyzed by Atomic absorption spectroscopy (AAS).\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.521869.4488\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.521869.4488","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solvent Extraction of Copper Ions from Wastewater using Reverse Micelles: Experimental and Optimization
In this study, the optimum conditions for different process parameters were determined for solvent extraction of copper ions from wastewater using reverse micelles. The process parameters viz. copper ion concentration, sodium bis-2-ethyl hexyl sulphosuccinate (AOT) concentration, solution pH, organic to aqueous phase volume ratio, and NaCl concentration were taken into consideration in response surface methodology, ranging from 30-150 mg/l, 0.04-0.2 [M], 3-11, 0.2-1.0, 0-4 g/100 ml respectively and their effect on percentage removal of copper ions were studied. A regression model was developed by conducting response surface methodology for the analysis of percentage removal of copper ions from wastewater. As many as fifty four experiments were procured from the design of experiments for the percentage removal of copper ions. The developed model was employed to optimize the process parameters being considered to maximize the response. The optimum conditions were found to be 30 mg/l copper ion concentration, 0.20 [M] AOT concentration, 3.12 pH, 0.57 organic to aqueous phase volume ratio, and 0.134 g/100 ml NaCl concentration. The obtained model was validated with experimental data and found to be best fitted within the tolerance limit. The effect of cross-interaction among the process parameters on the percentage removal of copper ions were also investigated. In this study, the copper ion concentration was analyzed by Atomic absorption spectroscopy (AAS).
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.