自愿随机检测中的选择偏倚:来自COVID-19抗体研究的证据

D. Dutz, M. Greenstone, Ali Hortaçsu, Santiago E. Lacouture, M. Mogstad, Danae Roumis, A. Shaikh, Alexander Torgovitsky, Winnie van Dijk
{"title":"自愿随机检测中的选择偏倚:来自COVID-19抗体研究的证据","authors":"D. Dutz, M. Greenstone, Ali Hortaçsu, Santiago E. Lacouture, M. Mogstad, Danae Roumis, A. Shaikh, Alexander Torgovitsky, Winnie van Dijk","doi":"10.1257/pandp.20231091","DOIUrl":null,"url":null,"abstract":"We use data from a serological study that experimentally varied financial incentives for participation to detect and characterize selection bias. Participants are from neighborhoods with substantially lower COVID-19 risks. Existing methods to account for the resulting selection bias produce wide bounds or estimates that are inconsistent with the population. One explanation for these inconsistent estimates is that the underlying methods presume a single dimension of unobserved heterogeneity. The data suggest that there are two types of nonparticipants with opposing selection patterns. Allowing for these different types may lead to better accounting for selection bias.","PeriodicalId":72114,"journal":{"name":"AEA papers and proceedings. American Economic Association","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection Bias in Voluntary Random Testing: Evidence from a COVID-19 Antibody Study\",\"authors\":\"D. Dutz, M. Greenstone, Ali Hortaçsu, Santiago E. Lacouture, M. Mogstad, Danae Roumis, A. Shaikh, Alexander Torgovitsky, Winnie van Dijk\",\"doi\":\"10.1257/pandp.20231091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use data from a serological study that experimentally varied financial incentives for participation to detect and characterize selection bias. Participants are from neighborhoods with substantially lower COVID-19 risks. Existing methods to account for the resulting selection bias produce wide bounds or estimates that are inconsistent with the population. One explanation for these inconsistent estimates is that the underlying methods presume a single dimension of unobserved heterogeneity. The data suggest that there are two types of nonparticipants with opposing selection patterns. Allowing for these different types may lead to better accounting for selection bias.\",\"PeriodicalId\":72114,\"journal\":{\"name\":\"AEA papers and proceedings. American Economic Association\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AEA papers and proceedings. American Economic Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1257/pandp.20231091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AEA papers and proceedings. American Economic Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1257/pandp.20231091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用来自一项血清学研究的数据,通过实验改变参与的财务激励来检测和表征选择偏差。参与者来自COVID-19风险低得多的社区。现有的解释选择偏差的方法产生了与总体不一致的宽界限或估计值。对这些不一致的估计的一种解释是,基本方法假设了未观察到的异质性的单一维度。数据表明,有两种选择模式相反的非参与者。考虑到这些不同的类型可能会更好地解释选择偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection Bias in Voluntary Random Testing: Evidence from a COVID-19 Antibody Study
We use data from a serological study that experimentally varied financial incentives for participation to detect and characterize selection bias. Participants are from neighborhoods with substantially lower COVID-19 risks. Existing methods to account for the resulting selection bias produce wide bounds or estimates that are inconsistent with the population. One explanation for these inconsistent estimates is that the underlying methods presume a single dimension of unobserved heterogeneity. The data suggest that there are two types of nonparticipants with opposing selection patterns. Allowing for these different types may lead to better accounting for selection bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do Earmarks Target Low-Income and Minority Communities? Evidence from US Drinking Water. Fiscal Stimulus and the Systematic Response of Monetary Policy Optimal Lending Contracts with Retrospective and Prospective Bias Hormone Therapy, Suicidal Risk, and Transgender Youth in the United States Heterogeneity in Attitude Responses: Evidence from Bostock v. Clayton County
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1