基于稀疏编码的调幅调频图像分析

E. Diop, K. Skretting, A. Boudraa
{"title":"基于稀疏编码的调幅调频图像分析","authors":"E. Diop, K. Skretting, A. Boudraa","doi":"10.23919/Eusipco47968.2020.9287876","DOIUrl":null,"url":null,"abstract":"We propose here an extension to images of a sparse coding frequency separation method. The approach is based on a 2D multicomponent amplitude modulation (AM)-frequency modulation (FM) image modeling, where the 2D monocomponent parts are obtained by sparse approximations that are solved with matching pursuits. For synthetic images, a separable dictionary is built, while a patch-based dictionary learning method is adopted for real images. In fact, the total variation (TV) norm is applied on patches to select the decomposition modes with highest TV-norm, doing so yields to an interesting image analysis tool that properly separates the image frequency contents. The proposed approach turns out to share the same behaviors with the well known empirical mode decomposition (EMD) method. Obtained results are encouraging for feature and texture analysis, and for image denoising as well.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"103 1","pages":"610-614"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AM-FM Image Analysis based on Sparse Coding Frequency Separation Approach\",\"authors\":\"E. Diop, K. Skretting, A. Boudraa\",\"doi\":\"10.23919/Eusipco47968.2020.9287876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose here an extension to images of a sparse coding frequency separation method. The approach is based on a 2D multicomponent amplitude modulation (AM)-frequency modulation (FM) image modeling, where the 2D monocomponent parts are obtained by sparse approximations that are solved with matching pursuits. For synthetic images, a separable dictionary is built, while a patch-based dictionary learning method is adopted for real images. In fact, the total variation (TV) norm is applied on patches to select the decomposition modes with highest TV-norm, doing so yields to an interesting image analysis tool that properly separates the image frequency contents. The proposed approach turns out to share the same behaviors with the well known empirical mode decomposition (EMD) method. Obtained results are encouraging for feature and texture analysis, and for image denoising as well.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"103 1\",\"pages\":\"610-614\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种扩展到图像稀疏编码的频率分离方法。该方法基于二维多分量调幅(AM)-调频(FM)图像建模,其中二维单分量部分通过稀疏逼近获得,并通过匹配追踪求解。对于合成图像,我们构建了可分字典,而对于真实图像,我们采用了基于patch的字典学习方法。实际上,在patch上应用总变差(TV)范数来选择TV范数最高的分解模式,这样做可以产生一个有趣的图像分析工具,它可以正确地分离图像频率内容。所提出的方法与经验模态分解(EMD)方法具有相同的行为。所得结果对特征和纹理分析以及图像去噪具有鼓舞作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AM-FM Image Analysis based on Sparse Coding Frequency Separation Approach
We propose here an extension to images of a sparse coding frequency separation method. The approach is based on a 2D multicomponent amplitude modulation (AM)-frequency modulation (FM) image modeling, where the 2D monocomponent parts are obtained by sparse approximations that are solved with matching pursuits. For synthetic images, a separable dictionary is built, while a patch-based dictionary learning method is adopted for real images. In fact, the total variation (TV) norm is applied on patches to select the decomposition modes with highest TV-norm, doing so yields to an interesting image analysis tool that properly separates the image frequency contents. The proposed approach turns out to share the same behaviors with the well known empirical mode decomposition (EMD) method. Obtained results are encouraging for feature and texture analysis, and for image denoising as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1