算术逻辑支配数据移动吗?FFT加速器能源效率的系统比较

T. Hoang, Amirali Shambayati, H. Hoffmann, A. Chien
{"title":"算术逻辑支配数据移动吗?FFT加速器能源效率的系统比较","authors":"T. Hoang, Amirali Shambayati, H. Hoffmann, A. Chien","doi":"10.1109/ASAP.2015.7245708","DOIUrl":null,"url":null,"abstract":"In this paper, we perform a systematic comparison to study the energy cost of varying data formats and data types w.r.t. arithmetic logic and data movement for accelerator-based heterogeneous systems in which both compute-intensive (FFT accelerator) and data-intensive accelerators (DLT accelerator) are added. We explore evaluation for a wide range of design processes (e.g. 32nm bulk-CMOS and projected 7nm FinFET) and memory systems (e.g. DDR3 and HMC). First, our result shows that when varying data formats, the energy costs of using floating point over fixed point are 5.3% (DDR3), 6.2% (HMC) for core and 0.8% (DDR3), 1.5% (HMC) for system in 32nm process. These energy costs are negligible as 0.2% and 0.01% for core and system in 7nm FinFET process in DDR3 memory and slightly increasing in HMC. Second, we identify that the core and system energy of systems using fixed point, 16-bit, FFT accelerator is nearly half of using 32-bit if data movement is also accelerated. This evidence implies that system energy is highly proportional to the amount of moving data when varying data types.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"66 1","pages":"66-67"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Does arithmetic logic dominate data movement? a systematic comparison of energy-efficiency for FFT accelerators\",\"authors\":\"T. Hoang, Amirali Shambayati, H. Hoffmann, A. Chien\",\"doi\":\"10.1109/ASAP.2015.7245708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we perform a systematic comparison to study the energy cost of varying data formats and data types w.r.t. arithmetic logic and data movement for accelerator-based heterogeneous systems in which both compute-intensive (FFT accelerator) and data-intensive accelerators (DLT accelerator) are added. We explore evaluation for a wide range of design processes (e.g. 32nm bulk-CMOS and projected 7nm FinFET) and memory systems (e.g. DDR3 and HMC). First, our result shows that when varying data formats, the energy costs of using floating point over fixed point are 5.3% (DDR3), 6.2% (HMC) for core and 0.8% (DDR3), 1.5% (HMC) for system in 32nm process. These energy costs are negligible as 0.2% and 0.01% for core and system in 7nm FinFET process in DDR3 memory and slightly increasing in HMC. Second, we identify that the core and system energy of systems using fixed point, 16-bit, FFT accelerator is nearly half of using 32-bit if data movement is also accelerated. This evidence implies that system energy is highly proportional to the amount of moving data when varying data types.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"66 1\",\"pages\":\"66-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2015.7245708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们进行了系统的比较,以研究不同数据格式和数据类型w.r.t.算法逻辑和数据移动的能量成本,在基于加速器的异构系统中,同时添加了计算密集型(FFT加速器)和数据密集型加速器(DLT加速器)。我们探索了广泛的设计工艺(例如32nm大块cmos和预计7nm FinFET)和存储系统(例如DDR3和HMC)的评估。首先,我们的研究结果表明,在不同的数据格式下,使用浮点比定点的能量成本在32nm制程中,核心为5.3% (DDR3), 6.2% (HMC),系统为0.8% (DDR3), 1.5% (HMC)。在DDR3存储器的7nm FinFET工艺中,这些能量成本可以忽略不计,为核心和系统的0.2%和0.01%,而在HMC中略有增加。其次,我们发现,如果数据移动也加速,使用定点16位FFT加速器的系统的核心和系统能量几乎是使用32位加速器的一半。这一证据表明,当改变数据类型时,系统能量与移动数据的数量高度成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does arithmetic logic dominate data movement? a systematic comparison of energy-efficiency for FFT accelerators
In this paper, we perform a systematic comparison to study the energy cost of varying data formats and data types w.r.t. arithmetic logic and data movement for accelerator-based heterogeneous systems in which both compute-intensive (FFT accelerator) and data-intensive accelerators (DLT accelerator) are added. We explore evaluation for a wide range of design processes (e.g. 32nm bulk-CMOS and projected 7nm FinFET) and memory systems (e.g. DDR3 and HMC). First, our result shows that when varying data formats, the energy costs of using floating point over fixed point are 5.3% (DDR3), 6.2% (HMC) for core and 0.8% (DDR3), 1.5% (HMC) for system in 32nm process. These energy costs are negligible as 0.2% and 0.01% for core and system in 7nm FinFET process in DDR3 memory and slightly increasing in HMC. Second, we identify that the core and system energy of systems using fixed point, 16-bit, FFT accelerator is nearly half of using 32-bit if data movement is also accelerated. This evidence implies that system energy is highly proportional to the amount of moving data when varying data types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Conference Chairs - ASAP 2020 Message from the ASAP 2016 chairs An IEEE 754 double-precision floating-point multiplier for denormalized and normalized floating-point numbers Application-set driven exploration for custom processor architectures Stochastic circuit design and performance evaluation of vector quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1