一种用于钻井自动化的新型粘度和密度传感平台

Miguel Gonzalez, Tim Thiel, C. Gooneratne, Robert W. Adams, C. Powell, A. Magana-Mora, J. Ramasamy, M. Deffenbaugh
{"title":"一种用于钻井自动化的新型粘度和密度传感平台","authors":"Miguel Gonzalez, Tim Thiel, C. Gooneratne, Robert W. Adams, C. Powell, A. Magana-Mora, J. Ramasamy, M. Deffenbaugh","doi":"10.2118/204584-ms","DOIUrl":null,"url":null,"abstract":"\n During drilling operations, measurements of drilling fluid/mud viscosity and density provide key information to ensure safe operations (e.g., maintain wellbore integrity) and improve the rate of penetration (e.g., maintain proper hole cleaning). Nowadays, these measurements are still performed manually by using a calibrated funnel viscometer and a weight balance, as stipulated by current American Petroleum Institute (API) standards. In this study, we introduce an automated viscosity/density measurement system based on an electromechanical tuning fork resonator. The system allows for continuous measurements as fast as several times per second in a compact footprint, allowing it to be deployed in tanks or pipelines and/or gathering data from multiple sensors in the mud circulation system. The streams of data produced were broadcasted to a nearby computer allowing for live monitoring of the viscosity and density. The results obtained by the in-tank system in five wells were in good agreement with the standard reference measurements from the mud logs. Here, we describe the development and testing of the tool as well as general guidelines for integration into a rig edge-computing system for real-time analytics and detection of operational problems and drilling automation.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Viscosity and Density Sensing Platform for Drilling Automation\",\"authors\":\"Miguel Gonzalez, Tim Thiel, C. Gooneratne, Robert W. Adams, C. Powell, A. Magana-Mora, J. Ramasamy, M. Deffenbaugh\",\"doi\":\"10.2118/204584-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n During drilling operations, measurements of drilling fluid/mud viscosity and density provide key information to ensure safe operations (e.g., maintain wellbore integrity) and improve the rate of penetration (e.g., maintain proper hole cleaning). Nowadays, these measurements are still performed manually by using a calibrated funnel viscometer and a weight balance, as stipulated by current American Petroleum Institute (API) standards. In this study, we introduce an automated viscosity/density measurement system based on an electromechanical tuning fork resonator. The system allows for continuous measurements as fast as several times per second in a compact footprint, allowing it to be deployed in tanks or pipelines and/or gathering data from multiple sensors in the mud circulation system. The streams of data produced were broadcasted to a nearby computer allowing for live monitoring of the viscosity and density. The results obtained by the in-tank system in five wells were in good agreement with the standard reference measurements from the mud logs. Here, we describe the development and testing of the tool as well as general guidelines for integration into a rig edge-computing system for real-time analytics and detection of operational problems and drilling automation.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204584-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204584-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在钻井作业过程中,钻井液/泥浆粘度和密度的测量为确保作业安全(例如,保持井筒完整性)和提高钻速(例如,保持适当的井眼清洁)提供了关键信息。目前,根据美国石油协会(API)现行标准的规定,这些测量仍然是通过使用校准过的漏斗粘度计和重量秤手动进行的。在这项研究中,我们介绍了一种基于机电音叉谐振器的粘度/密度自动测量系统。该系统可以在紧凑的空间内以每秒几次的速度进行连续测量,可以部署在储罐或管道中,也可以从泥浆循环系统中的多个传感器收集数据。产生的数据流被广播到附近的一台计算机上,从而可以实时监测粘度和密度。5口井的槽内系统测量结果与泥浆测井的标准参考测量结果吻合良好。本文介绍了该工具的开发和测试,以及集成到钻井边缘计算系统中的一般指导方针,用于实时分析和检测操作问题和钻井自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Viscosity and Density Sensing Platform for Drilling Automation
During drilling operations, measurements of drilling fluid/mud viscosity and density provide key information to ensure safe operations (e.g., maintain wellbore integrity) and improve the rate of penetration (e.g., maintain proper hole cleaning). Nowadays, these measurements are still performed manually by using a calibrated funnel viscometer and a weight balance, as stipulated by current American Petroleum Institute (API) standards. In this study, we introduce an automated viscosity/density measurement system based on an electromechanical tuning fork resonator. The system allows for continuous measurements as fast as several times per second in a compact footprint, allowing it to be deployed in tanks or pipelines and/or gathering data from multiple sensors in the mud circulation system. The streams of data produced were broadcasted to a nearby computer allowing for live monitoring of the viscosity and density. The results obtained by the in-tank system in five wells were in good agreement with the standard reference measurements from the mud logs. Here, we describe the development and testing of the tool as well as general guidelines for integration into a rig edge-computing system for real-time analytics and detection of operational problems and drilling automation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Leaders Can Shape the Oil & Gas Industry – Accelerating Innovations Through Business & Environmental Intelligent Systems High Performance Friction Reducer for Slickwater Fracturing Applications: Laboratory Study and Field Implementation CO2 Waterless Fracturing and Huff and Puff in Tight Oil Reservoir Switched Reluctance Motor for Electric Submersible Pump Sparse Water Fracture Channel Detection from Subsurface Sensors Via a Smart Orthogonal Matching Pursuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1