基于CUK转换器的自适应神经模糊推理平衡充电系统

Mohammad Fajar Setyawan, M. Z. Efendi, F. Murdianto
{"title":"基于CUK转换器的自适应神经模糊推理平衡充电系统","authors":"Mohammad Fajar Setyawan, M. Z. Efendi, F. Murdianto","doi":"10.12962/jaree.v5i2.199","DOIUrl":null,"url":null,"abstract":"In a battery set, there is always a voltage difference caused by charging and discharging. Therefore, it is necessary to pay attention to the condition of the battery or State of Charge (SOC) so that it is in a balanced state between the batteries. Unbalanced battery conditions result in decreased performance of the battery. For that we need a balancing circuit that works actively with the help of a DC-DC converter. DC-DC converters generally have a principle like a buck-boost converter to increase and decrease the output voltage, however the output still has a fairly large ripple in the waveform. Therefore, the CUK converter is used which is a development of the buck-boost converter topology, where the output of this CUK converter has smaller ripples because it uses two capacitors and two inductors. Of the various methods used to adjust the duty cycle of the CUK converter, a precise and accurate algorithm is needed to overcome the instability of the converter output. The method used to adjust the duty cycle uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm as the development of the Fuzzy method. The system is implemented using MATLAB Simulink software. The simulation results show that the output of the CUK converter with the ANFIS method has a faster response speed reaching a set point of 1.95 × 10-4 seconds and the accuracy of the output voltage with ANFIS is 99.94% while the accuracy of the output converter current using ANFIS is 65.7%.Keywords: ANFIS, balancing, battery, CUK converter, state of charge (SOC).15","PeriodicalId":32708,"journal":{"name":"JAREE Journal on Advanced Research in Electrical Engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing Charging System Using Adaptive Neuro-Fuzzy Inference System Based On CUK Converter\",\"authors\":\"Mohammad Fajar Setyawan, M. Z. Efendi, F. Murdianto\",\"doi\":\"10.12962/jaree.v5i2.199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a battery set, there is always a voltage difference caused by charging and discharging. Therefore, it is necessary to pay attention to the condition of the battery or State of Charge (SOC) so that it is in a balanced state between the batteries. Unbalanced battery conditions result in decreased performance of the battery. For that we need a balancing circuit that works actively with the help of a DC-DC converter. DC-DC converters generally have a principle like a buck-boost converter to increase and decrease the output voltage, however the output still has a fairly large ripple in the waveform. Therefore, the CUK converter is used which is a development of the buck-boost converter topology, where the output of this CUK converter has smaller ripples because it uses two capacitors and two inductors. Of the various methods used to adjust the duty cycle of the CUK converter, a precise and accurate algorithm is needed to overcome the instability of the converter output. The method used to adjust the duty cycle uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm as the development of the Fuzzy method. The system is implemented using MATLAB Simulink software. The simulation results show that the output of the CUK converter with the ANFIS method has a faster response speed reaching a set point of 1.95 × 10-4 seconds and the accuracy of the output voltage with ANFIS is 99.94% while the accuracy of the output converter current using ANFIS is 65.7%.Keywords: ANFIS, balancing, battery, CUK converter, state of charge (SOC).15\",\"PeriodicalId\":32708,\"journal\":{\"name\":\"JAREE Journal on Advanced Research in Electrical Engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAREE Journal on Advanced Research in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12962/jaree.v5i2.199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAREE Journal on Advanced Research in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/jaree.v5i2.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在电池组中,总是存在充电和放电引起的电压差。因此,有必要注意电池的状态或荷电状态(SOC),使其在电池之间处于平衡状态。不平衡的电池状态会导致电池性能下降。为此,我们需要一个在DC-DC转换器的帮助下主动工作的平衡电路。DC-DC变换器一般采用类似降压变换器的原理来增加和降低输出电压,但是输出波形中仍然有相当大的纹波。因此,使用CUK变换器,这是一种buck-boost变换器拓扑结构的发展,其中该CUK变换器的输出具有较小的波纹,因为它使用了两个电容器和两个电感。在用于调整CUK变换器占空比的各种方法中,需要一种精确的算法来克服变换器输出的不稳定性。该方法采用自适应神经模糊推理系统(ANFIS)算法作为模糊方法的发展。系统采用MATLAB Simulink软件实现。仿真结果表明,采用ANFIS方法的CUK变换器输出响应速度更快,达到1.95 × 10-4秒的设定值,输出电压精度为99.94%,输出变换器电流精度为65.7%。关键词:ANFIS,平衡,电池,CUK变换器,荷电状态(SOC)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balancing Charging System Using Adaptive Neuro-Fuzzy Inference System Based On CUK Converter
In a battery set, there is always a voltage difference caused by charging and discharging. Therefore, it is necessary to pay attention to the condition of the battery or State of Charge (SOC) so that it is in a balanced state between the batteries. Unbalanced battery conditions result in decreased performance of the battery. For that we need a balancing circuit that works actively with the help of a DC-DC converter. DC-DC converters generally have a principle like a buck-boost converter to increase and decrease the output voltage, however the output still has a fairly large ripple in the waveform. Therefore, the CUK converter is used which is a development of the buck-boost converter topology, where the output of this CUK converter has smaller ripples because it uses two capacitors and two inductors. Of the various methods used to adjust the duty cycle of the CUK converter, a precise and accurate algorithm is needed to overcome the instability of the converter output. The method used to adjust the duty cycle uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm as the development of the Fuzzy method. The system is implemented using MATLAB Simulink software. The simulation results show that the output of the CUK converter with the ANFIS method has a faster response speed reaching a set point of 1.95 × 10-4 seconds and the accuracy of the output voltage with ANFIS is 99.94% while the accuracy of the output converter current using ANFIS is 65.7%.Keywords: ANFIS, balancing, battery, CUK converter, state of charge (SOC).15
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
期刊最新文献
A new lossless passive snubber with simple structure for pulse width modulation DC-DC converters Prosumer-Based Optimization of Educational Building Grid Connected with Plug-in Electric Vehicle Integration using Modified Firefly Algorithm Pencak Silat Movement Classification Using CNN Based On Body Pose Load Frequency Control by Quadratic Regulator Approach with Compensating Pole using SIMULINK Temperature and Humidity Control System for 20 kV of Cubicle with Multiple Input Multiple Output Fuzzy Logic Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1