{"title":"理解负(和正)点互信息对词向量的影响","authors":"Alexandre Salle, Aline Villavicencio","doi":"10.1080/0952813X.2022.2072004","DOIUrl":null,"url":null,"abstract":"ABSTRACT Despite the recent popularity of contextual word embeddings, static word embeddings still dominate lexical semantic tasks, making their study of continued relevance. A widely adopted family of such static word embeddings is derived by explicitly factorising the Pointwise Mutual Information (PMI) weighting of the co-occurrence matrix. As unobserved co-occurrences lead PMI to negative infinity, a common workaround is to clip negative PMI at 0. However, it is unclear what information is lost by collapsing negative PMI values to 0. To answer this question, we isolate and study the effects of negative (and positive) PMI on the semantics and geometry of models adopting factorisation of different PMI matrices. Word and sentence-level evaluations show that only accounting for positive PMI in the factorisation strongly captures both semantics and syntax, whereas using only negative PMI captures little of semantics but a surprising amount of syntactic information. Results also reveal that incorporating negative PMI induces stronger rank invariance of vector norms and directions, as well as improved rare word representations.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"113 1","pages":"1161 - 1199"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the effects of negative (and positive) pointwise mutual information on word vectors\",\"authors\":\"Alexandre Salle, Aline Villavicencio\",\"doi\":\"10.1080/0952813X.2022.2072004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Despite the recent popularity of contextual word embeddings, static word embeddings still dominate lexical semantic tasks, making their study of continued relevance. A widely adopted family of such static word embeddings is derived by explicitly factorising the Pointwise Mutual Information (PMI) weighting of the co-occurrence matrix. As unobserved co-occurrences lead PMI to negative infinity, a common workaround is to clip negative PMI at 0. However, it is unclear what information is lost by collapsing negative PMI values to 0. To answer this question, we isolate and study the effects of negative (and positive) PMI on the semantics and geometry of models adopting factorisation of different PMI matrices. Word and sentence-level evaluations show that only accounting for positive PMI in the factorisation strongly captures both semantics and syntax, whereas using only negative PMI captures little of semantics but a surprising amount of syntactic information. Results also reveal that incorporating negative PMI induces stronger rank invariance of vector norms and directions, as well as improved rare word representations.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"113 1\",\"pages\":\"1161 - 1199\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2022.2072004\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2022.2072004","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Understanding the effects of negative (and positive) pointwise mutual information on word vectors
ABSTRACT Despite the recent popularity of contextual word embeddings, static word embeddings still dominate lexical semantic tasks, making their study of continued relevance. A widely adopted family of such static word embeddings is derived by explicitly factorising the Pointwise Mutual Information (PMI) weighting of the co-occurrence matrix. As unobserved co-occurrences lead PMI to negative infinity, a common workaround is to clip negative PMI at 0. However, it is unclear what information is lost by collapsing negative PMI values to 0. To answer this question, we isolate and study the effects of negative (and positive) PMI on the semantics and geometry of models adopting factorisation of different PMI matrices. Word and sentence-level evaluations show that only accounting for positive PMI in the factorisation strongly captures both semantics and syntax, whereas using only negative PMI captures little of semantics but a surprising amount of syntactic information. Results also reveal that incorporating negative PMI induces stronger rank invariance of vector norms and directions, as well as improved rare word representations.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving