核桃叶提取物浓度对ZnO纳米颗粒生物合成的影响:表征及抑菌活性

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Technology Pub Date : 2022-10-19 DOI:10.1080/10667857.2022.2136556
Eda Çinar Avar, Kübra Erkan Türkmen, E. Loğoğlu, H. Katırcıoğlu
{"title":"核桃叶提取物浓度对ZnO纳米颗粒生物合成的影响:表征及抑菌活性","authors":"Eda Çinar Avar, Kübra Erkan Türkmen, E. Loğoğlu, H. Katırcıoğlu","doi":"10.1080/10667857.2022.2136556","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present article, we have developed an eco-friendly, phytosynthetic, cost-effective, and straightforward method for the synthesis of ZnO nanoparticles using leaf extracts of Juglans Regia (JR) as green reducing agents. The powder X-ray diffraction pattern revealed the high crystalline nature of synthesised ZnO nanoparticles also rivalled with ICSD no. 98–009-4004. The SEM images of the samples showed the spherical and irregularly distributed rod and plate-like structures. The EDS spectrum filed only Zn and O peaks revealed that the sample has good purity in ZnO nanoparticles. The HRTEM analysis explained the formed ZnO nanoparticles by biogenic reduction were hexagonal shape with definite edges and the average grain size was obtained as 33.18 ± 6.2 nm for the 50JR sample. The d-spacings of fringes and SAED pattern got also rivalled with XRD d-spacings. According to the UV-Visible analysis, the values of peak absorbance wavelength decreased (blue shift) with the increase in the leaf extract concentrations. The bandgap values were calculated in the range of 2.74–3.17 eV. The Fourier Transform Infra-Red study explicated the biomolecules for the reduction of nanoparticles and also ZnO bonding. These results also proved the presence of ZnO nanoparticles synthesised using Juglans Regia extract. Regarding the antimicrobial effects of ZnO NPs, ZnO NP which was using 50 mL JR extracts was detected as highly efficient nanoparticles against test microorganisms. In particular, the highest antimicrobial activity was measured with 15.66 ± 1.15 mm against Candida albicans 10,231 and revealed data compared with fluconazole, as reference antifungal, recorded 69% antimicrobial index. The findings demonstrated that ZnO NPs can be evaluated for use in biomedical applications. Graphical Abstract","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"12 1","pages":"3194 - 3204"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Juglans Regia (Walnut) leaf extract concentration on the biosynthesis of ZnO nanoparticles: Characterisation and antimicrobial activity\",\"authors\":\"Eda Çinar Avar, Kübra Erkan Türkmen, E. Loğoğlu, H. Katırcıoğlu\",\"doi\":\"10.1080/10667857.2022.2136556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the present article, we have developed an eco-friendly, phytosynthetic, cost-effective, and straightforward method for the synthesis of ZnO nanoparticles using leaf extracts of Juglans Regia (JR) as green reducing agents. The powder X-ray diffraction pattern revealed the high crystalline nature of synthesised ZnO nanoparticles also rivalled with ICSD no. 98–009-4004. The SEM images of the samples showed the spherical and irregularly distributed rod and plate-like structures. The EDS spectrum filed only Zn and O peaks revealed that the sample has good purity in ZnO nanoparticles. The HRTEM analysis explained the formed ZnO nanoparticles by biogenic reduction were hexagonal shape with definite edges and the average grain size was obtained as 33.18 ± 6.2 nm for the 50JR sample. The d-spacings of fringes and SAED pattern got also rivalled with XRD d-spacings. According to the UV-Visible analysis, the values of peak absorbance wavelength decreased (blue shift) with the increase in the leaf extract concentrations. The bandgap values were calculated in the range of 2.74–3.17 eV. The Fourier Transform Infra-Red study explicated the biomolecules for the reduction of nanoparticles and also ZnO bonding. These results also proved the presence of ZnO nanoparticles synthesised using Juglans Regia extract. Regarding the antimicrobial effects of ZnO NPs, ZnO NP which was using 50 mL JR extracts was detected as highly efficient nanoparticles against test microorganisms. In particular, the highest antimicrobial activity was measured with 15.66 ± 1.15 mm against Candida albicans 10,231 and revealed data compared with fluconazole, as reference antifungal, recorded 69% antimicrobial index. The findings demonstrated that ZnO NPs can be evaluated for use in biomedical applications. Graphical Abstract\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"12 1\",\"pages\":\"3194 - 3204\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2022.2136556\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2136556","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本研究以核桃叶提取物(JR)为绿色还原剂,开发了一种环保、经济、直接的氧化锌纳米颗粒合成方法。粉末x射线衍射图显示合成的ZnO纳米颗粒的高结晶性也与ICSD no相媲美。98-009-4004。样品的SEM图像显示出球形和不规则分布的棒状和片状结构。EDS谱中只有Zn和O峰,表明样品中ZnO纳米颗粒纯度较高。HRTEM分析表明,50JR样品的生物还原法制备的ZnO纳米颗粒为六边形,边缘明确,平均晶粒尺寸为33.18±6.2 nm。条纹和SAED图的d-间距也与XRD的d-间距相当。紫外可见光谱分析表明,随着叶提取物浓度的增加,吸光度峰值波长降低(蓝移)。在2.74 ~ 3.17 eV范围内计算了带隙值。傅里叶变换红外研究阐明了生物分子对纳米颗粒和ZnO键的还原作用。这些结果也证明了用核桃提取物合成ZnO纳米粒子的存在。在氧化锌纳米粒子的抑菌效果方面,用50 mL JR提取物制备的氧化锌纳米粒子对被试微生物的抑菌效果较好。其中,对白色念珠菌10,231的抑菌活性最高,为15.66±1.15 mm,与氟康唑相比,抗菌指数为69%。研究结果表明,ZnO纳米粒子可以用于生物医学应用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the Juglans Regia (Walnut) leaf extract concentration on the biosynthesis of ZnO nanoparticles: Characterisation and antimicrobial activity
ABSTRACT In the present article, we have developed an eco-friendly, phytosynthetic, cost-effective, and straightforward method for the synthesis of ZnO nanoparticles using leaf extracts of Juglans Regia (JR) as green reducing agents. The powder X-ray diffraction pattern revealed the high crystalline nature of synthesised ZnO nanoparticles also rivalled with ICSD no. 98–009-4004. The SEM images of the samples showed the spherical and irregularly distributed rod and plate-like structures. The EDS spectrum filed only Zn and O peaks revealed that the sample has good purity in ZnO nanoparticles. The HRTEM analysis explained the formed ZnO nanoparticles by biogenic reduction were hexagonal shape with definite edges and the average grain size was obtained as 33.18 ± 6.2 nm for the 50JR sample. The d-spacings of fringes and SAED pattern got also rivalled with XRD d-spacings. According to the UV-Visible analysis, the values of peak absorbance wavelength decreased (blue shift) with the increase in the leaf extract concentrations. The bandgap values were calculated in the range of 2.74–3.17 eV. The Fourier Transform Infra-Red study explicated the biomolecules for the reduction of nanoparticles and also ZnO bonding. These results also proved the presence of ZnO nanoparticles synthesised using Juglans Regia extract. Regarding the antimicrobial effects of ZnO NPs, ZnO NP which was using 50 mL JR extracts was detected as highly efficient nanoparticles against test microorganisms. In particular, the highest antimicrobial activity was measured with 15.66 ± 1.15 mm against Candida albicans 10,231 and revealed data compared with fluconazole, as reference antifungal, recorded 69% antimicrobial index. The findings demonstrated that ZnO NPs can be evaluated for use in biomedical applications. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
期刊最新文献
Fabrication and development of biogenic selenium nanoparticles incorporated alginate hydrogel wound care material: a pre-clinical study Biopolymer-coated magnesium-alloy-based multi-functional bio-nanocomposite scaffolds Enhancing anticancer efficacy: xovoltib-loaded chitosan-tripolyphosphate nanoparticles for targeted drug delivery against MCF-7 breast cancer cells One Pot Synthesis, characterization, morphology and optical profilometry properties of La-doped and La–Ag-doped cobalt oxide nanoparticles Supercritical hydrothermal synthesis of ultra-fine Cu powders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1