Shuai Li, X. Sun, Rui Wang, Yan Hu, Xiaofei Ma, Jiachang Wang
{"title":"气体反压辅助化学发泡注塑件胞体结构形成及演化过程的实验研究","authors":"Shuai Li, X. Sun, Rui Wang, Yan Hu, Xiaofei Ma, Jiachang Wang","doi":"10.1177/0021955X20950224","DOIUrl":null,"url":null,"abstract":"By using a standard stretch spline as the research object, the influence of gas counter pressure (GCP) technology on melt foaming behavior in chemical foaming injection molding (CFIM) process was investigated. Related experimental line for GCP assisted CFIM foam was designed, and the effect of GCP technology on melt flow front, spline surface quality and internal cell was studied. According to the results obtained from the experiment, two critical GCP pressures and one critical GCP holding time were innovation proposed. Two critical GCP pressures are the critical GCP pressure of melt flow front cell not cracking and the critical GCP pressure of melt not foaming, respectively. The critical GCP holding time is the secondary foaming behavior time. Based on the proposed critical GCP pressures and critical GCP holding time, the influence mechanism of GCP technology on melt foaming action during CFIM process was revealed.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"604 1","pages":"659 - 674"},"PeriodicalIF":3.2000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental investigation on the forming and evolution process of cell structure in gas counter pressure assisted chemical foaming injection molded parts\",\"authors\":\"Shuai Li, X. Sun, Rui Wang, Yan Hu, Xiaofei Ma, Jiachang Wang\",\"doi\":\"10.1177/0021955X20950224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using a standard stretch spline as the research object, the influence of gas counter pressure (GCP) technology on melt foaming behavior in chemical foaming injection molding (CFIM) process was investigated. Related experimental line for GCP assisted CFIM foam was designed, and the effect of GCP technology on melt flow front, spline surface quality and internal cell was studied. According to the results obtained from the experiment, two critical GCP pressures and one critical GCP holding time were innovation proposed. Two critical GCP pressures are the critical GCP pressure of melt flow front cell not cracking and the critical GCP pressure of melt not foaming, respectively. The critical GCP holding time is the secondary foaming behavior time. Based on the proposed critical GCP pressures and critical GCP holding time, the influence mechanism of GCP technology on melt foaming action during CFIM process was revealed.\",\"PeriodicalId\":15236,\"journal\":{\"name\":\"Journal of Cellular Plastics\",\"volume\":\"604 1\",\"pages\":\"659 - 674\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Plastics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0021955X20950224\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X20950224","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Experimental investigation on the forming and evolution process of cell structure in gas counter pressure assisted chemical foaming injection molded parts
By using a standard stretch spline as the research object, the influence of gas counter pressure (GCP) technology on melt foaming behavior in chemical foaming injection molding (CFIM) process was investigated. Related experimental line for GCP assisted CFIM foam was designed, and the effect of GCP technology on melt flow front, spline surface quality and internal cell was studied. According to the results obtained from the experiment, two critical GCP pressures and one critical GCP holding time were innovation proposed. Two critical GCP pressures are the critical GCP pressure of melt flow front cell not cracking and the critical GCP pressure of melt not foaming, respectively. The critical GCP holding time is the secondary foaming behavior time. Based on the proposed critical GCP pressures and critical GCP holding time, the influence mechanism of GCP technology on melt foaming action during CFIM process was revealed.
期刊介绍:
The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.