温度对超塑水泥浆体流变性能的影响

C. Jolicoeur, J. Sharman, A. L. Otis, M. Simard, M. Pagé
{"title":"温度对超塑水泥浆体流变性能的影响","authors":"C. Jolicoeur, J. Sharman, A. L. Otis, M. Simard, M. Pagé","doi":"10.14359/6194","DOIUrl":null,"url":null,"abstract":"The variation in rheological properties of normal portland cement type-10 and blended silica fume (SF) cement pastes was investigated as a function of temperature (0-40 degrees) in order to elucidate changes in concrete workability with ambient temperature. The rheological parameters measured included the Kantro mini-slump (spreading areas, S) and the dynamic viscosity (n) at various hear rates as a function of superplasticizer concentration (sodium polynaphthalene sulfonate, PNS). To interpret the changes in fluidity of the cement pastes, the concentration of the superplasticizer in the solution phase was monitored as a function of time (0-2 hours); calorimetric measurements of the early cement hydration rate (0-3 hours) in the pastes were also measured in some cases. The variations observed in paste fluidity (S, or 1/n) at a given PNS dosage exhibit significant non-linear variations with temperature; the rate of change of S and 1/n with time (i.e. slump loss rate) are also found to be non-linear, usually with a maximum value in the interval 5-20 degrees. The non-linear effects are more pronounced with the SF cement than with the type-10 cement. The observations are interpreted tentatively on the basis of coupled physico-chemical effects involving PNS adsorption on cement and on silica, and the influence of PNS on the early hydration rate.","PeriodicalId":21898,"journal":{"name":"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"The Influence of Temperature on the Rheological Properties of Superplasticized Cement Pastes\",\"authors\":\"C. Jolicoeur, J. Sharman, A. L. Otis, M. Simard, M. Pagé\",\"doi\":\"10.14359/6194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variation in rheological properties of normal portland cement type-10 and blended silica fume (SF) cement pastes was investigated as a function of temperature (0-40 degrees) in order to elucidate changes in concrete workability with ambient temperature. The rheological parameters measured included the Kantro mini-slump (spreading areas, S) and the dynamic viscosity (n) at various hear rates as a function of superplasticizer concentration (sodium polynaphthalene sulfonate, PNS). To interpret the changes in fluidity of the cement pastes, the concentration of the superplasticizer in the solution phase was monitored as a function of time (0-2 hours); calorimetric measurements of the early cement hydration rate (0-3 hours) in the pastes were also measured in some cases. The variations observed in paste fluidity (S, or 1/n) at a given PNS dosage exhibit significant non-linear variations with temperature; the rate of change of S and 1/n with time (i.e. slump loss rate) are also found to be non-linear, usually with a maximum value in the interval 5-20 degrees. The non-linear effects are more pronounced with the SF cement than with the type-10 cement. The observations are interpreted tentatively on the basis of coupled physico-chemical effects involving PNS adsorption on cement and on silica, and the influence of PNS on the early hydration rate.\",\"PeriodicalId\":21898,\"journal\":{\"name\":\"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/6194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-173: Fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/6194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

为了阐明混凝土和易性随环境温度的变化,研究了10型普通硅酸盐水泥和掺合硅灰(SF)水泥浆的流变特性随温度(0-40度)的变化。测量的流变参数包括不同速率下Kantro微坍落度(扩展面积,S)和动态粘度(n)作为高效减水剂浓度(聚萘磺酸钠,PNS)的函数。为了解释水泥浆体流动性的变化,监测了溶液中高效减水剂的浓度作为时间(0-2小时)的函数;在某些情况下,还测量了膏体中早期水泥水化率(0-3小时)的量热测量。在给定PNS剂量下,膏体流动性(S或1/n)随温度的变化呈显著的非线性变化;S和1/n随时间的变化率(即坍落度损失率)也是非线性的,通常在5-20度区间有最大值。与10型水泥相比,SF型水泥的非线性效应更为明显。根据PNS在水泥和二氧化硅上吸附的物理化学耦合效应,以及PNS对早期水化速率的影响,初步解释了这些观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Influence of Temperature on the Rheological Properties of Superplasticized Cement Pastes
The variation in rheological properties of normal portland cement type-10 and blended silica fume (SF) cement pastes was investigated as a function of temperature (0-40 degrees) in order to elucidate changes in concrete workability with ambient temperature. The rheological parameters measured included the Kantro mini-slump (spreading areas, S) and the dynamic viscosity (n) at various hear rates as a function of superplasticizer concentration (sodium polynaphthalene sulfonate, PNS). To interpret the changes in fluidity of the cement pastes, the concentration of the superplasticizer in the solution phase was monitored as a function of time (0-2 hours); calorimetric measurements of the early cement hydration rate (0-3 hours) in the pastes were also measured in some cases. The variations observed in paste fluidity (S, or 1/n) at a given PNS dosage exhibit significant non-linear variations with temperature; the rate of change of S and 1/n with time (i.e. slump loss rate) are also found to be non-linear, usually with a maximum value in the interval 5-20 degrees. The non-linear effects are more pronounced with the SF cement than with the type-10 cement. The observations are interpreted tentatively on the basis of coupled physico-chemical effects involving PNS adsorption on cement and on silica, and the influence of PNS on the early hydration rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Concrete Pumping: A New World Record The Influence of Chemical Admixtures on Restrained Drying Shrinkage of Concrete Mechanical Properties of Modified Reactive Powder Concrete Dispersion Mechanisms of Alite Stabilized by Superplasticizers Containing Polyethylene Oxide Graft Chains Properties of Polymer-Cement Coatings for Concrete Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1