{"title":"专门化的前缀","authors":"Khwaja Zubair Sediqi, Lars Prehn, Oliver Gasser","doi":"10.1145/3544912.3544916","DOIUrl":null,"url":null,"abstract":"Autonomous Systems (ASes) exchange reachability information between each other using BGP---the de-facto standard inter-AS routing protocol. While IPv4 (IPv6) routes more specific than /24 (/48) are commonly filtered (and hence not propagated), route collectors still observe many of them. In this work, we take a closer look at those \"hyper-specific\" prefixes (HSPs). In particular, we analyze their prevalence, use cases, and whether operators use them intentionally or accidentally. While their total number increases over time, most HSPs can only be seen by route collector peers. Nonetheless, some HSPs can be seen constantly throughout an entire year and propagate widely. We find that most HSPs represent (internal) routes to peering infrastructure or are related to address block relocations or blackholing. While hundreds of operators intentionally add HSPs to well-known routing databases, we observe that many HSPs are possibly accidentally leaked routes.","PeriodicalId":50646,"journal":{"name":"ACM Sigcomm Computer Communication Review","volume":"249 1","pages":"20 - 34"},"PeriodicalIF":2.2000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hyper-specific prefixes\",\"authors\":\"Khwaja Zubair Sediqi, Lars Prehn, Oliver Gasser\",\"doi\":\"10.1145/3544912.3544916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous Systems (ASes) exchange reachability information between each other using BGP---the de-facto standard inter-AS routing protocol. While IPv4 (IPv6) routes more specific than /24 (/48) are commonly filtered (and hence not propagated), route collectors still observe many of them. In this work, we take a closer look at those \\\"hyper-specific\\\" prefixes (HSPs). In particular, we analyze their prevalence, use cases, and whether operators use them intentionally or accidentally. While their total number increases over time, most HSPs can only be seen by route collector peers. Nonetheless, some HSPs can be seen constantly throughout an entire year and propagate widely. We find that most HSPs represent (internal) routes to peering infrastructure or are related to address block relocations or blackholing. While hundreds of operators intentionally add HSPs to well-known routing databases, we observe that many HSPs are possibly accidentally leaked routes.\",\"PeriodicalId\":50646,\"journal\":{\"name\":\"ACM Sigcomm Computer Communication Review\",\"volume\":\"249 1\",\"pages\":\"20 - 34\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigcomm Computer Communication Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3544912.3544916\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigcomm Computer Communication Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3544912.3544916","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Autonomous Systems (ASes) exchange reachability information between each other using BGP---the de-facto standard inter-AS routing protocol. While IPv4 (IPv6) routes more specific than /24 (/48) are commonly filtered (and hence not propagated), route collectors still observe many of them. In this work, we take a closer look at those "hyper-specific" prefixes (HSPs). In particular, we analyze their prevalence, use cases, and whether operators use them intentionally or accidentally. While their total number increases over time, most HSPs can only be seen by route collector peers. Nonetheless, some HSPs can be seen constantly throughout an entire year and propagate widely. We find that most HSPs represent (internal) routes to peering infrastructure or are related to address block relocations or blackholing. While hundreds of operators intentionally add HSPs to well-known routing databases, we observe that many HSPs are possibly accidentally leaked routes.
期刊介绍:
Computer Communication Review (CCR) is an online publication of the ACM Special Interest Group on Data Communication (SIGCOMM) and publishes articles on topics within the SIG''s field of interest. Technical papers accepted to CCR typically report on practical advances or the practical applications of theoretical advances. CCR serves as a forum for interesting and novel ideas at an early stage in their development. The focus is on timely dissemination of new ideas that may help trigger additional investigations. While the innovation and timeliness are the major criteria for its acceptance, technical robustness and readability will also be considered in the review process. We particularly encourage papers with early evaluation or feasibility studies.