通用优化框架:基于学习者模糊评价和E-CARGO的以领导为中心的学习型团队形成

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS IEEE Systems Man and Cybernetics Magazine Pub Date : 2023-04-01 DOI:10.1109/MSMC.2022.3231698
Hua Ma, Jingze Li, Yuqi Tang, Haibin Zhu, Zhuoxuan Huang, Wen-sheng Tang
{"title":"通用优化框架:基于学习者模糊评价和E-CARGO的以领导为中心的学习型团队形成","authors":"Hua Ma, Jingze Li, Yuqi Tang, Haibin Zhu, Zhuoxuan Huang, Wen-sheng Tang","doi":"10.1109/MSMC.2022.3231698","DOIUrl":null,"url":null,"abstract":"Building the right learning teams is a key to the success of collaborative learning in online and offline learning environments. However, existing research on learning team formation (LTF) ignores the uncertainty of learners’ abilities and lacks a common problem modeling and optimization approach. Aiming at the characteristics of two typical types of leader-centered (LC) LTF problems, a universal optimization framework of LC-LTF is proposed by introducing role-based collaboration (RBC) theory. This framework evaluates the comprehensive ability of learners via a fuzzy description mechanism; applies the environments–classes, agents, roles, groups, and objects (E-CARGO) model to formulate the LC-LTF problem; and employs an optimization platform to obtain an optimal solution. A case study demonstrates the effectiveness and feasibility of the proposed framework.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"4 1","pages":"6-17"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Universal Optimization Framework: Leader-Centered Learning Team Formation Based on Fuzzy Evaluations of Learners and E-CARGO\",\"authors\":\"Hua Ma, Jingze Li, Yuqi Tang, Haibin Zhu, Zhuoxuan Huang, Wen-sheng Tang\",\"doi\":\"10.1109/MSMC.2022.3231698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building the right learning teams is a key to the success of collaborative learning in online and offline learning environments. However, existing research on learning team formation (LTF) ignores the uncertainty of learners’ abilities and lacks a common problem modeling and optimization approach. Aiming at the characteristics of two typical types of leader-centered (LC) LTF problems, a universal optimization framework of LC-LTF is proposed by introducing role-based collaboration (RBC) theory. This framework evaluates the comprehensive ability of learners via a fuzzy description mechanism; applies the environments–classes, agents, roles, groups, and objects (E-CARGO) model to formulate the LC-LTF problem; and employs an optimization platform to obtain an optimal solution. A case study demonstrates the effectiveness and feasibility of the proposed framework.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"4 1\",\"pages\":\"6-17\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMC.2022.3231698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2022.3231698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 1

摘要

建立正确的学习团队是在线和离线学习环境中协作学习成功的关键。然而,现有的关于学习团队形成的研究忽视了学习者能力的不确定性,缺乏一种通用的问题建模和优化方法。针对两种典型的以领导者为中心(LC) LTF问题的特点,引入基于角色协作(role-based collaboration, RBC)理论,提出了LC-LTF的通用优化框架。该框架通过模糊描述机制评价学习者的综合能力;应用环境类、代理、角色、组和对象(E-CARGO)模型来制定LC-LTF问题;并利用优化平台得到最优解。一个案例研究证明了该框架的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal Optimization Framework: Leader-Centered Learning Team Formation Based on Fuzzy Evaluations of Learners and E-CARGO
Building the right learning teams is a key to the success of collaborative learning in online and offline learning environments. However, existing research on learning team formation (LTF) ignores the uncertainty of learners’ abilities and lacks a common problem modeling and optimization approach. Aiming at the characteristics of two typical types of leader-centered (LC) LTF problems, a universal optimization framework of LC-LTF is proposed by introducing role-based collaboration (RBC) theory. This framework evaluates the comprehensive ability of learners via a fuzzy description mechanism; applies the environments–classes, agents, roles, groups, and objects (E-CARGO) model to formulate the LC-LTF problem; and employs an optimization platform to obtain an optimal solution. A case study demonstrates the effectiveness and feasibility of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
期刊最新文献
Report of the First IEEE International Summer School (Online) on Environments—Classes, Agents, Roles, Groups, and Objects and Its Applications [Conference Reports] Saeid Nahavandi: Academic, Innovator, Technopreneur, and Thought Leader [Society News] IEEE Foundation IEEE Feedback Artificial Intelligence for the Social Internet of Things: Analysis and Modeling Using Collaborative Technologies [Special Section Editorial]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1