为未来的P - ANDA实验准备的m nster簇射目标

S. Vestrick, P. Brand, D. Bonaventura, Hanna Eick, C. Mannweiler, A. Khoukaz
{"title":"为未来的P - ANDA实验准备的m<s:1> nster簇射目标","authors":"S. Vestrick, P. Brand, D. Bonaventura, Hanna Eick, C. Mannweiler, A. Khoukaz","doi":"10.1051/epjconf/202328502002","DOIUrl":null,"url":null,"abstract":"For high precision storage ring experiments as the future P̅ANDA experiment, very sophisticated internal targets have to be used. For this purpose, a state-of-the-art cluster-jet target was developed at the University Münster. Basically, hydrogen is cooled to cryogenic temperatures and pressed through a specially shaped Laval nozzle to form a cluster-jet expanding into vacuum. Due to the stability and large mass of the clusters, a practically undisturbed flight path in vacuum of above 5 m is possible, leading to manifold possible applications, including the interaction with a storage ring beam at a distance of 2.25 m as desired for the P̅ANDA experiment. With a first prototype target, the “proof-of-principle” was delivered, and after first improvements the world record in target thickness in such large distance to the nozzle was measured. Based on this work, the final P̅ANDA cluster-jet target was developed and built up, and is presented in this article.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Münster cluster-jet target for the future P̅ANDA experiment\",\"authors\":\"S. Vestrick, P. Brand, D. Bonaventura, Hanna Eick, C. Mannweiler, A. Khoukaz\",\"doi\":\"10.1051/epjconf/202328502002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For high precision storage ring experiments as the future P̅ANDA experiment, very sophisticated internal targets have to be used. For this purpose, a state-of-the-art cluster-jet target was developed at the University Münster. Basically, hydrogen is cooled to cryogenic temperatures and pressed through a specially shaped Laval nozzle to form a cluster-jet expanding into vacuum. Due to the stability and large mass of the clusters, a practically undisturbed flight path in vacuum of above 5 m is possible, leading to manifold possible applications, including the interaction with a storage ring beam at a distance of 2.25 m as desired for the P̅ANDA experiment. With a first prototype target, the “proof-of-principle” was delivered, and after first improvements the world record in target thickness in such large distance to the nozzle was measured. Based on this work, the final P̅ANDA cluster-jet target was developed and built up, and is presented in this article.\",\"PeriodicalId\":11731,\"journal\":{\"name\":\"EPJ Web of Conferences\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjconf/202328502002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202328502002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于高精度的存储环实验,如未来的P ~ ANDA实验,必须使用非常复杂的内部靶。为此目的,大学 nster开发了一种最先进的集束喷射靶。基本上,氢气被冷却到低温,并通过一个特殊形状的拉瓦尔喷嘴被压制,形成一个膨胀到真空的簇状射流。由于团簇的稳定性和大质量,在5米以上的真空中几乎不受干扰的飞行路径是可能的,导致多种可能的应用,包括与P ' ANDA实验所需的2.25米距离的存储环束相互作用。有了第一个原型靶,“原理证明”就交付了,经过首次改进,在距离喷嘴如此之大的距离上测量了靶厚度的世界纪录。在此基础上,研制并建立了最终的p_anda集束喷射靶,并在本文中进行了介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Münster cluster-jet target for the future P̅ANDA experiment
For high precision storage ring experiments as the future P̅ANDA experiment, very sophisticated internal targets have to be used. For this purpose, a state-of-the-art cluster-jet target was developed at the University Münster. Basically, hydrogen is cooled to cryogenic temperatures and pressed through a specially shaped Laval nozzle to form a cluster-jet expanding into vacuum. Due to the stability and large mass of the clusters, a practically undisturbed flight path in vacuum of above 5 m is possible, leading to manifold possible applications, including the interaction with a storage ring beam at a distance of 2.25 m as desired for the P̅ANDA experiment. With a first prototype target, the “proof-of-principle” was delivered, and after first improvements the world record in target thickness in such large distance to the nozzle was measured. Based on this work, the final P̅ANDA cluster-jet target was developed and built up, and is presented in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heavy flavor and quarkonia results from the PHENIX experiment The ups and downs of inferred cosmological lithium Repurposing of the Run 2 CMS High Level Trigger Infrastructure as a Cloud Resource for Offline Computing HPC resources for CMS offline computing: An integration and scalability challenge for the Submission Infrastructure Adoption of a token-based authentication model for the CMS Submission Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1