从游戏活动日志推断学生熟练程度的数据驱动方法

M. Falakmasir, José P. González-Brenes, Geoffrey J. Gordon, K. DiCerbo
{"title":"从游戏活动日志推断学生熟练程度的数据驱动方法","authors":"M. Falakmasir, José P. González-Brenes, Geoffrey J. Gordon, K. DiCerbo","doi":"10.1145/2876034.2876038","DOIUrl":null,"url":null,"abstract":"Student assessments are important because they allow collecting evidence about learning. However, time spent on evaluating students may be otherwise used for instructional activities. Computer-based learning platforms provide the opportunity for unobtrusively gathering students' digital learning footprints. This data can be used to track learning progress and make inference about student competencies. We present a novel data analysis pipeline, Student Proficiency Inferrer from Game data (SPRING), that allows modeling game playing behavior in educational games. Unlike prior work, SPRING is a fully data-driven method that does not require costly domain knowledge engineering. Moreover, it produces a simple interpretable model that not only fits the data but also predicts learning outcomes. We validate our framework using data collected from students playing 11 educational mini-games. Our results suggest that SPRING can predict math assessments accurately on withheld test data (Correlation=0.55, Spearman rho=0.51).","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":"382 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Data-Driven Approach for Inferring Student Proficiency from Game Activity Logs\",\"authors\":\"M. Falakmasir, José P. González-Brenes, Geoffrey J. Gordon, K. DiCerbo\",\"doi\":\"10.1145/2876034.2876038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student assessments are important because they allow collecting evidence about learning. However, time spent on evaluating students may be otherwise used for instructional activities. Computer-based learning platforms provide the opportunity for unobtrusively gathering students' digital learning footprints. This data can be used to track learning progress and make inference about student competencies. We present a novel data analysis pipeline, Student Proficiency Inferrer from Game data (SPRING), that allows modeling game playing behavior in educational games. Unlike prior work, SPRING is a fully data-driven method that does not require costly domain knowledge engineering. Moreover, it produces a simple interpretable model that not only fits the data but also predicts learning outcomes. We validate our framework using data collected from students playing 11 educational mini-games. Our results suggest that SPRING can predict math assessments accurately on withheld test data (Correlation=0.55, Spearman rho=0.51).\",\"PeriodicalId\":20739,\"journal\":{\"name\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"volume\":\"382 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2876034.2876038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2876038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

学生评估很重要,因为他们可以收集学习的证据。然而,花在评价学生上的时间可能会用于教学活动。以计算机为基础的学习平台为不显眼地收集学生的数字学习足迹提供了机会。这些数据可以用来跟踪学习进度,并对学生的能力进行推断。我们提出了一种新颖的数据分析管道,即来自游戏数据的学生熟练程度推断器(SPRING),它允许对教育游戏中的游戏行为进行建模。与之前的工作不同,SPRING是一种完全数据驱动的方法,不需要昂贵的领域知识工程。此外,它产生了一个简单的可解释的模型,不仅适合数据,而且还预测学习结果。我们使用从玩11个教育小游戏的学生中收集的数据来验证我们的框架。我们的研究结果表明,SPRING可以在保留的测试数据上准确预测数学评估(相关系数=0.55,Spearman rho=0.51)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Data-Driven Approach for Inferring Student Proficiency from Game Activity Logs
Student assessments are important because they allow collecting evidence about learning. However, time spent on evaluating students may be otherwise used for instructional activities. Computer-based learning platforms provide the opportunity for unobtrusively gathering students' digital learning footprints. This data can be used to track learning progress and make inference about student competencies. We present a novel data analysis pipeline, Student Proficiency Inferrer from Game data (SPRING), that allows modeling game playing behavior in educational games. Unlike prior work, SPRING is a fully data-driven method that does not require costly domain knowledge engineering. Moreover, it produces a simple interpretable model that not only fits the data but also predicts learning outcomes. We validate our framework using data collected from students playing 11 educational mini-games. Our results suggest that SPRING can predict math assessments accurately on withheld test data (Correlation=0.55, Spearman rho=0.51).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Urbanism: Interest-based Subcultures as Drivers of Informal Learning in an Online Community Course Builder Skill Maps A Preliminary Look at MOOC-associated Facebook Groups: Prevalence, Geographic Representation, and Homophily Profiling MOOC Course Returners: How Does Student Behavior Change Between Two Course Enrollments? AXIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1