{"title":"非饱和孔隙弹性问题弱解的整体存在性","authors":"J. Both, Iuliu Sorin Pop, I. Yotov","doi":"10.1051/m2an/2021063","DOIUrl":null,"url":null,"abstract":"We study unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot's well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards' equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global existence of weak solutions to unsaturated poroelasticity\",\"authors\":\"J. Both, Iuliu Sorin Pop, I. Yotov\",\"doi\":\"10.1051/m2an/2021063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot's well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards' equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2021063\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2021063","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Global existence of weak solutions to unsaturated poroelasticity
We study unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot's well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards' equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.