{"title":"用GUP对BTZ黑洞熵的非交换校正","authors":"M. Anacleto, F. A. Brito, B. Carvalho, E. Passos","doi":"10.1155/2021/6633684","DOIUrl":null,"url":null,"abstract":"We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tunneling formalism we apply the Hamilton-Jacobi method by using the Wentzel-Kramers-Brillouin (WKB) approach. In the present study we have obtained logarithmic corrections to entropy due to the effect of noncommutativity and GUP. We also address the issue concerning stability of the non-commutative BTZ black hole by investigating its modified specific heat capacity.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Noncommutative Correction to the Entropy of BTZ Black Hole with GUP\",\"authors\":\"M. Anacleto, F. A. Brito, B. Carvalho, E. Passos\",\"doi\":\"10.1155/2021/6633684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tunneling formalism we apply the Hamilton-Jacobi method by using the Wentzel-Kramers-Brillouin (WKB) approach. In the present study we have obtained logarithmic corrections to entropy due to the effect of noncommutativity and GUP. We also address the issue concerning stability of the non-commutative BTZ black hole by investigating its modified specific heat capacity.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6633684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6633684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Noncommutative Correction to the Entropy of BTZ Black Hole with GUP
We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tunneling formalism we apply the Hamilton-Jacobi method by using the Wentzel-Kramers-Brillouin (WKB) approach. In the present study we have obtained logarithmic corrections to entropy due to the effect of noncommutativity and GUP. We also address the issue concerning stability of the non-commutative BTZ black hole by investigating its modified specific heat capacity.