地聚合物水泥:未来以绿色水泥取代灰色水泥的倡议

Mukesh Kumar, K. Kumar
{"title":"地聚合物水泥:未来以绿色水泥取代灰色水泥的倡议","authors":"Mukesh Kumar, K. Kumar","doi":"10.5281/ZENODO.4445828","DOIUrl":null,"url":null,"abstract":"The emissions of greenhouse gases such as carbon dioxide from the production of Ordinary Portland Cement and Blended Portland Cement have widely affected the environment with increase in infrastructure development worldwide. Secondly, due to the continuous mining of limestone for the production of cement there is also simultaneous depletion of natural resources and hardly will it last up to maximum 40 years. Hence we need to switch over to some other alternate binders for constructions purpose in future. Geopolymer Cement is one of the inventions which is produced by a polymeric chain reaction of alkali-activated alumino-silicate materials better known as alkali activator (NaOH/Na2SiO3) binders with the industrial by-product materials such as Fly Ash, Rice Husk Ash, Slag, Crusher Dust etc. and provides high compressive strength which is comparable to BPC and reduces the carbon foot print. The objective of our study is to prepare the low CO2 foot print green Geopolymer Cement which may substitute the Ordinary Portland Cement and Blended Portland Cement in future and will helpful to reduce the greenhouse effect up to some extent and takes an initiative towards the green revolution movement.","PeriodicalId":39562,"journal":{"name":"Jianzhu Cailiao Xuebao/Journal of Building Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geopolymer Cement: an Initiative towards the Replacement of Grey Cement by Green Cement in Future\",\"authors\":\"Mukesh Kumar, K. Kumar\",\"doi\":\"10.5281/ZENODO.4445828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emissions of greenhouse gases such as carbon dioxide from the production of Ordinary Portland Cement and Blended Portland Cement have widely affected the environment with increase in infrastructure development worldwide. Secondly, due to the continuous mining of limestone for the production of cement there is also simultaneous depletion of natural resources and hardly will it last up to maximum 40 years. Hence we need to switch over to some other alternate binders for constructions purpose in future. Geopolymer Cement is one of the inventions which is produced by a polymeric chain reaction of alkali-activated alumino-silicate materials better known as alkali activator (NaOH/Na2SiO3) binders with the industrial by-product materials such as Fly Ash, Rice Husk Ash, Slag, Crusher Dust etc. and provides high compressive strength which is comparable to BPC and reduces the carbon foot print. The objective of our study is to prepare the low CO2 foot print green Geopolymer Cement which may substitute the Ordinary Portland Cement and Blended Portland Cement in future and will helpful to reduce the greenhouse effect up to some extent and takes an initiative towards the green revolution movement.\",\"PeriodicalId\":39562,\"journal\":{\"name\":\"Jianzhu Cailiao Xuebao/Journal of Building Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jianzhu Cailiao Xuebao/Journal of Building Materials\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.4445828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jianzhu Cailiao Xuebao/Journal of Building Materials","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.5281/ZENODO.4445828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

随着世界范围内基础设施建设的增加,普通硅酸盐水泥和混合硅酸盐水泥生产过程中产生的二氧化碳等温室气体的排放已经广泛地影响了环境。其次,由于为了生产水泥而不断开采石灰石,自然资源也在同时枯竭,这种枯竭几乎不会持续长达40年。因此,我们需要切换到一些其他的粘合剂用于未来的建设目的。地聚合物水泥是由碱活化的铝硅酸盐材料(即碱活化剂(NaOH/Na2SiO3))与工业副产物如粉煤灰、稻壳灰、矿渣、破碎机粉尘等材料聚合链式反应而成的发明之一,具有可与BPC媲美的高抗压强度,并减少了碳足迹。我们的研究目的是制备低二氧化碳足迹的绿色地聚合物水泥,它可能在未来取代普通波特兰水泥和混合波特兰水泥,并有助于在一定程度上减少温室效应,主动走向绿色革命运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geopolymer Cement: an Initiative towards the Replacement of Grey Cement by Green Cement in Future
The emissions of greenhouse gases such as carbon dioxide from the production of Ordinary Portland Cement and Blended Portland Cement have widely affected the environment with increase in infrastructure development worldwide. Secondly, due to the continuous mining of limestone for the production of cement there is also simultaneous depletion of natural resources and hardly will it last up to maximum 40 years. Hence we need to switch over to some other alternate binders for constructions purpose in future. Geopolymer Cement is one of the inventions which is produced by a polymeric chain reaction of alkali-activated alumino-silicate materials better known as alkali activator (NaOH/Na2SiO3) binders with the industrial by-product materials such as Fly Ash, Rice Husk Ash, Slag, Crusher Dust etc. and provides high compressive strength which is comparable to BPC and reduces the carbon foot print. The objective of our study is to prepare the low CO2 foot print green Geopolymer Cement which may substitute the Ordinary Portland Cement and Blended Portland Cement in future and will helpful to reduce the greenhouse effect up to some extent and takes an initiative towards the green revolution movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jianzhu Cailiao Xuebao/Journal of Building Materials
Jianzhu Cailiao Xuebao/Journal of Building Materials Engineering-Building and Construction
CiteScore
2.70
自引率
0.00%
发文量
3652
期刊最新文献
Geopolymer Cement: an Initiative towards the Replacement of Grey Cement by Green Cement in Future An investigation into tensile structure system: construction morphology and architectural interventions Production of Green Cement from Slag Enhanced by Egyptian Metakaolin Materials Analysis of autoclaved aerated concrete (AAC) blocks with reference to its potential and sustainability Study of Architectural Ceramics of the Qal'a of Bani Hammad
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1