{"title":"毛茛空中提取物合成氧化锌纳米颗粒的抗菌和抗氧化活性研究","authors":"Terfo Yilma, Mikyas Kassaw, H. Murthy, A. Dekebo","doi":"10.1155/2023/8825762","DOIUrl":null,"url":null,"abstract":"The present work reports the synthesis of zinc oxide nanoparticles (ZnO NPs) by applying an aqueous aerial extract of Ranunculus multifidus plant. The thermogravimetric analysis revealed that the prepared ZnO NPs are stable from 480 to 800°C. The diffraction study confirmed the hexagonal wurtzite structure for the synthesized ZnO NPs with the typical crystallite sizes of 47.92, 22.70, and 15.35 nm the volume ratios (extract to precursor) of 1 : 1, 3 : 2, and 2 : 3, respectively. The experimentally deduced Eg values are 1.82, 3.1, and 2.57 eV for 1 : 1, 3 : 2, and 2 : 3 ZnO NPs, respectively. The spherical and rod-like morphologies were confirmed for the NPs by the images taken using electron microscopy. The reducing agents in the aqueous extracts of R. multifidus converted the ionic zinc to zinc nanoparticles, and these NPs exhibit credible antibacterial effects against tested bacterial species. The biosynthesized ZnO NPs revealed significant antibacterial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The order of the antibacterial potential of the NPs was found to follow the order: S. aureus (17.10 ± 0.45 mm) > B. subtilis (16.10 ± 0.15 mm) > E. coli (14.5 ± 0.32 mm) > P. aeruginosa (13 ± 0.0 mm). The antioxidant activities of the produced ZnO NPs in various ratios showed the potentiality of phytochemicals to scavenge the free radicals, which is encouraging for the discovery of novel compounds for the treatment of cancer diseases.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ZnO Nanoparticles Synthesized using Aerial Extract of Ranunculus multifidus Plant: Antibacterial and Antioxidant Activity\",\"authors\":\"Terfo Yilma, Mikyas Kassaw, H. Murthy, A. Dekebo\",\"doi\":\"10.1155/2023/8825762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work reports the synthesis of zinc oxide nanoparticles (ZnO NPs) by applying an aqueous aerial extract of Ranunculus multifidus plant. The thermogravimetric analysis revealed that the prepared ZnO NPs are stable from 480 to 800°C. The diffraction study confirmed the hexagonal wurtzite structure for the synthesized ZnO NPs with the typical crystallite sizes of 47.92, 22.70, and 15.35 nm the volume ratios (extract to precursor) of 1 : 1, 3 : 2, and 2 : 3, respectively. The experimentally deduced Eg values are 1.82, 3.1, and 2.57 eV for 1 : 1, 3 : 2, and 2 : 3 ZnO NPs, respectively. The spherical and rod-like morphologies were confirmed for the NPs by the images taken using electron microscopy. The reducing agents in the aqueous extracts of R. multifidus converted the ionic zinc to zinc nanoparticles, and these NPs exhibit credible antibacterial effects against tested bacterial species. The biosynthesized ZnO NPs revealed significant antibacterial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The order of the antibacterial potential of the NPs was found to follow the order: S. aureus (17.10 ± 0.45 mm) > B. subtilis (16.10 ± 0.15 mm) > E. coli (14.5 ± 0.32 mm) > P. aeruginosa (13 ± 0.0 mm). The antioxidant activities of the produced ZnO NPs in various ratios showed the potentiality of phytochemicals to scavenge the free radicals, which is encouraging for the discovery of novel compounds for the treatment of cancer diseases.\",\"PeriodicalId\":16442,\"journal\":{\"name\":\"Journal of Nanomaterials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8825762\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/8825762","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
ZnO Nanoparticles Synthesized using Aerial Extract of Ranunculus multifidus Plant: Antibacterial and Antioxidant Activity
The present work reports the synthesis of zinc oxide nanoparticles (ZnO NPs) by applying an aqueous aerial extract of Ranunculus multifidus plant. The thermogravimetric analysis revealed that the prepared ZnO NPs are stable from 480 to 800°C. The diffraction study confirmed the hexagonal wurtzite structure for the synthesized ZnO NPs with the typical crystallite sizes of 47.92, 22.70, and 15.35 nm the volume ratios (extract to precursor) of 1 : 1, 3 : 2, and 2 : 3, respectively. The experimentally deduced Eg values are 1.82, 3.1, and 2.57 eV for 1 : 1, 3 : 2, and 2 : 3 ZnO NPs, respectively. The spherical and rod-like morphologies were confirmed for the NPs by the images taken using electron microscopy. The reducing agents in the aqueous extracts of R. multifidus converted the ionic zinc to zinc nanoparticles, and these NPs exhibit credible antibacterial effects against tested bacterial species. The biosynthesized ZnO NPs revealed significant antibacterial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The order of the antibacterial potential of the NPs was found to follow the order: S. aureus (17.10 ± 0.45 mm) > B. subtilis (16.10 ± 0.15 mm) > E. coli (14.5 ± 0.32 mm) > P. aeruginosa (13 ± 0.0 mm). The antioxidant activities of the produced ZnO NPs in various ratios showed the potentiality of phytochemicals to scavenge the free radicals, which is encouraging for the discovery of novel compounds for the treatment of cancer diseases.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.