自主控制碳酸盐岩储层基质酸化作业性能的新型流量控制装置

M. Moradi, M. Konopczynski
{"title":"自主控制碳酸盐岩储层基质酸化作业性能的新型流量控制装置","authors":"M. Moradi, M. Konopczynski","doi":"10.2118/205975-ms","DOIUrl":null,"url":null,"abstract":"\n Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs.\n Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones.\n This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion.\n This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The New Flow Control Devices Autonomously Controlling the Performance of Matrix Acid Stimulation Operations in Carbonate Reservoirs\",\"authors\":\"M. Moradi, M. Konopczynski\",\"doi\":\"10.2118/205975-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs.\\n Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones.\\n This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion.\\n This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205975-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205975-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基质酸化是一种常见但复杂的增产措施,可以显著提高生产/注入速度,特别是在碳酸盐岩油藏中。然而,由于现有和/或正在开发的储层非均质性,这种操作可能无法在井的所有区域实现预期的改善。本文介绍了一种新的流量控制装置(FCD),该装置以前用于控制长水平井的注水,也可以用于提高碳酸盐岩储层的酸化改造的一致性。碳酸盐岩储层的酸化改造是一个正反馈过程。酸优先选择抵抗力最低的路径,即渗透性较高的区域或低皮肤。一旦酸与地层发生反应,该层的注入能力就会增加,从而进一步优先注入到增产层。对高渗透层的过度处理导致酸性物质向低渗透层的分布不佳。机械、化学或泡沫转移已被用于改善沿井筒的增产一致性,然而,在具有天然裂缝的碳酸盐岩储层中,这些方法可能会失败,因为裂缝注入性主导了增产过程。一种新的FCD已经开发出来,可以在基质增产过程中自动控制流量并提供机械导流。一旦在某个区域达到预定义的上限流量,阀门就会自动关闭。这消除了小偷层对酸注入一致性的影响,并保持了规定的酸分布。与其他fcd一样,该装置安装在井中的多个隔室中。该装置具有两种操作条件,一种是作为被动流出控制阀,另一种是当通过阀门的流量超过设计限制时作为屏障,类似于断路器。一旦某层被酸充分增产,该层的注入速度超过了装置的起下钻点,该层的装置就会关闭,限制进一步增产。然后,酸可以流到其他层并进行增产,该过程可以在井的后期重复进行,以重新增产。这种性能使作业者能够最大限度地减少高渗透层对酸性的影响,并自主应对储层性质的动态变化,特别是虫孔的生长。该装置可以安装在注入井和生产井的下部完井中。它可以在现有完井中进行改造,也可以在可回收完井中使用。该技术允许对碳酸盐岩储层进行重复增产,无需连续油管或其他复杂的干预措施,即可提供机械导流。本文将简要介绍该装置的性能、流环测试和数值模拟的一些结果。讨论了碳酸盐岩油藏完井设计工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The New Flow Control Devices Autonomously Controlling the Performance of Matrix Acid Stimulation Operations in Carbonate Reservoirs
Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs. Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones. This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion. This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of Wettability Alteration from Alkali/Nanoparticles/Polymer Flooding - Integrating Data of Imbibition, Contact Angle and Interfacial-Tension to Screen Injection Agents Benchmarking and Field-Testing of the Distributed Quasi-Newton Derivative-Free Optimization Method for Field Development Optimization Aplicability of an Innovative and Light Seismic Approach to Monitor SAGD Operations in Surmont: A Blind Test Four Simple Questions: Decision-Centered Risk and Project Management Gas Migration in Wellbores During Pressurized Mud Cap Drilling PMCD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1