{"title":"求解双极Max-Tp方程约束多目标优化问题","authors":"Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu","doi":"10.5121/IJSC.2016.7402","DOIUrl":null,"url":null,"abstract":"This work considers the multi-objective optimization problem constrained by a system of bipolar fuzzy relational equations with max-product composition. An integer optimization based technique for order of preference by similarity to the ideal solution is proposed for solving such a problem. Some critical features associated with the feasible domain and optimal solutions of the bipolar max-Tp equation constrained optimization problem are studied. An illustrative example verifying the idea of this paper is included. This is the first attempt to study the bipolar max-T equation constrained multi-objective optimization problems from an integer programming viewpoint.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":"49 1","pages":"11-23"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Solving Bipolar Max-Tp Equation Constrained Multi-Objective Optimization Problems\",\"authors\":\"Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu\",\"doi\":\"10.5121/IJSC.2016.7402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work considers the multi-objective optimization problem constrained by a system of bipolar fuzzy relational equations with max-product composition. An integer optimization based technique for order of preference by similarity to the ideal solution is proposed for solving such a problem. Some critical features associated with the feasible domain and optimal solutions of the bipolar max-Tp equation constrained optimization problem are studied. An illustrative example verifying the idea of this paper is included. This is the first attempt to study the bipolar max-T equation constrained multi-objective optimization problems from an integer programming viewpoint.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\"49 1\",\"pages\":\"11-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJSC.2016.7402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJSC.2016.7402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
This work considers the multi-objective optimization problem constrained by a system of bipolar fuzzy relational equations with max-product composition. An integer optimization based technique for order of preference by similarity to the ideal solution is proposed for solving such a problem. Some critical features associated with the feasible domain and optimal solutions of the bipolar max-Tp equation constrained optimization problem are studied. An illustrative example verifying the idea of this paper is included. This is the first attempt to study the bipolar max-T equation constrained multi-objective optimization problems from an integer programming viewpoint.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.