基于证据的目标识别新技术:EB-ORS1

Q4 Computer Science 模式识别与人工智能 Pub Date : 1992-08-30 DOI:10.1109/ICPR.1992.201815
T. Caelli, Ashley Dreier
{"title":"基于证据的目标识别新技术:EB-ORS1","authors":"T. Caelli, Ashley Dreier","doi":"10.1109/ICPR.1992.201815","DOIUrl":null,"url":null,"abstract":"The authors have extended the evidence-based object recognition system of Jain and Hoffman (1988) to include some new view-independent features, a new optimized rule generation procedure based upon minimum entropy clustering and a neural network which estimates optimal evidence weights and provides an associated matching procedure. This approach provides an objective definition of the difficulty of an object recognition problem. The authors also evaluate the procedures and performance of the system with two sets of CAD (range) models.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"31 1","pages":"450-454"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some new techniques for evidence-based object recognition: EB-ORS1\",\"authors\":\"T. Caelli, Ashley Dreier\",\"doi\":\"10.1109/ICPR.1992.201815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have extended the evidence-based object recognition system of Jain and Hoffman (1988) to include some new view-independent features, a new optimized rule generation procedure based upon minimum entropy clustering and a neural network which estimates optimal evidence weights and provides an associated matching procedure. This approach provides an objective definition of the difficulty of an object recognition problem. The authors also evaluate the procedures and performance of the system with two sets of CAD (range) models.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"31 1\",\"pages\":\"450-454\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

作者扩展了Jain和Hoffman(1988)的基于证据的目标识别系统,包括一些新的与视图无关的特征,一个新的基于最小熵聚类的优化规则生成过程和一个估计最优证据权重并提供相关匹配过程的神经网络。这种方法为目标识别问题的难度提供了一个客观的定义。作者还用两套CAD(范围)模型对系统的程序和性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Some new techniques for evidence-based object recognition: EB-ORS1
The authors have extended the evidence-based object recognition system of Jain and Hoffman (1988) to include some new view-independent features, a new optimized rule generation procedure based upon minimum entropy clustering and a neural network which estimates optimal evidence weights and provides an associated matching procedure. This approach provides an objective definition of the difficulty of an object recognition problem. The authors also evaluate the procedures and performance of the system with two sets of CAD (range) models.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
期刊最新文献
Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Istanbul, Turkey, December 17–18, 2021, Proceedings Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part I Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II Conditional Graph Pattern Matching with a Basic Static Analysis Ensemble Classification Using Entropy-Based Features for MRI Tissue Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1