基于pcm的节能房间冷却系统的性能分析

IF 1.1 Q4 THERMODYNAMICS Frontiers in Heat and Mass Transfer Pub Date : 2023-04-19 DOI:10.5098/hmt.20.28
A. Roy, Ummid I. Shaikh, Sonali Kale, Anirban Sur
{"title":"基于pcm的节能房间冷却系统的性能分析","authors":"A. Roy, Ummid I. Shaikh, Sonali Kale, Anirban Sur","doi":"10.5098/hmt.20.28","DOIUrl":null,"url":null,"abstract":"The requirement for sustainable development for buildings is to have environmentally friendly cooling and heating systems. The utilization of phase change materials (PCM) in the cooling system is a potential solution for minimizing active power requirements as well as for reducing the size of components of a vapor compression refrigeration VCR system. A prototype of an Air-PCM (T25™) heat exchanger was fabricated and tested in actual environmental conditions. Experimental trials using a salt hydrate as PCM have shown the maximum cooling effect of 2.05 kW when 75% of the PCM was solidified. Based on the results, it is found that PCM-based passive cooling has the potential to reduce the size (cooling capacity) of the air conditioner (AC) in the range of 13 to 46 %.","PeriodicalId":46200,"journal":{"name":"Frontiers in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PERFORMANCE ANALYSIS OF AN ENERGY-EFFICIENT PCM-BASED ROOM COOLING SYSTEM\",\"authors\":\"A. Roy, Ummid I. Shaikh, Sonali Kale, Anirban Sur\",\"doi\":\"10.5098/hmt.20.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The requirement for sustainable development for buildings is to have environmentally friendly cooling and heating systems. The utilization of phase change materials (PCM) in the cooling system is a potential solution for minimizing active power requirements as well as for reducing the size of components of a vapor compression refrigeration VCR system. A prototype of an Air-PCM (T25™) heat exchanger was fabricated and tested in actual environmental conditions. Experimental trials using a salt hydrate as PCM have shown the maximum cooling effect of 2.05 kW when 75% of the PCM was solidified. Based on the results, it is found that PCM-based passive cooling has the potential to reduce the size (cooling capacity) of the air conditioner (AC) in the range of 13 to 46 %.\",\"PeriodicalId\":46200,\"journal\":{\"name\":\"Frontiers in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5098/hmt.20.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5098/hmt.20.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2

摘要

建筑可持续发展的要求是要有环保的制冷和供暖系统。在冷却系统中使用相变材料(PCM)是最小化有功功率需求以及减小蒸汽压缩制冷VCR系统组件尺寸的潜在解决方案。制作了Air-PCM (T25™)热交换器的原型,并在实际环境条件下进行了测试。用盐水合物作为PCM的实验试验表明,当PCM的75%凝固时,冷却效果最大,为2.05 kW。基于结果,发现基于pcm的被动冷却有可能将空调(AC)的尺寸(制冷量)减小13%至46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PERFORMANCE ANALYSIS OF AN ENERGY-EFFICIENT PCM-BASED ROOM COOLING SYSTEM
The requirement for sustainable development for buildings is to have environmentally friendly cooling and heating systems. The utilization of phase change materials (PCM) in the cooling system is a potential solution for minimizing active power requirements as well as for reducing the size of components of a vapor compression refrigeration VCR system. A prototype of an Air-PCM (T25™) heat exchanger was fabricated and tested in actual environmental conditions. Experimental trials using a salt hydrate as PCM have shown the maximum cooling effect of 2.05 kW when 75% of the PCM was solidified. Based on the results, it is found that PCM-based passive cooling has the potential to reduce the size (cooling capacity) of the air conditioner (AC) in the range of 13 to 46 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
61.10%
发文量
66
审稿时长
10 weeks
期刊介绍: Frontiers in Heat and Mass Transfer is a free-access and peer-reviewed online journal that provides a central vehicle for the exchange of basic ideas in heat and mass transfer between researchers and engineers around the globe. It disseminates information of permanent interest in the area of heat and mass transfer. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques and measurements as applied to all kinds of current and emerging problems are welcome. Contributions to the journal consist of original research on heat and mass transfer in equipment, thermal systems, thermodynamic processes, nanotechnology, biotechnology, information technology, energy and power applications, as well as security and related topics.
期刊最新文献
Heat and Humidity Transport Analysis Inside a Special Underground Building HEAT TRANSFER ANALYSIS OF MHD CASSON FLUID FLOW BETWEEN TWO POROUS PLATES WITH DIFFERENT PERMEABILITY PERFORMANCE ANALYSIS OF AN ENERGY-EFFICIENT PCM-BASED ROOM COOLING SYSTEM COMPARISON OF TEMPERATURE, RADIATION RATE, HEAT LOSS, FURNACE AND THERMAL EFFICIENCIES OF DIFFERENT PLATES IN THE FBC COMBUSTION CHAMBER MATHEMATICAL ANALYSIS OF CONVECTIVE HEAT EXCHANGER FROM RENEWABLE SUN’S RADIATION THROUGH NANO-FLUID IN DIRECT ABSORPTION SOLAR COLLECTORS WITH THE PROCREATION OF ENTROPY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1