{"title":"检验大维度相关性","authors":"Matthias Arnold, R. Weißbach","doi":"10.17877/DE290R-267","DOIUrl":null,"url":null,"abstract":"This paper introduces a test for zero correlation in situations where the correlation matrix is large compared to the sample size. The test statistic is the sum of the squared correlation coefficients in the sample. We derive its limiting null distribution as the number of variables as well as the sample size converge to infinity. A Monte Carlo simulation finds both size and power for finite samples to be suitable. We apply the test to the vector of default rates, a risk factor in portfolio credit risk, in different sectors of the German economy.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing large-dimensional correlation\",\"authors\":\"Matthias Arnold, R. Weißbach\",\"doi\":\"10.17877/DE290R-267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a test for zero correlation in situations where the correlation matrix is large compared to the sample size. The test statistic is the sum of the squared correlation coefficients in the sample. We derive its limiting null distribution as the number of variables as well as the sample size converge to infinity. A Monte Carlo simulation finds both size and power for finite samples to be suitable. We apply the test to the vector of default rates, a risk factor in portfolio credit risk, in different sectors of the German economy.\",\"PeriodicalId\":10841,\"journal\":{\"name\":\"CTIT technical reports series\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CTIT technical reports series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17877/DE290R-267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper introduces a test for zero correlation in situations where the correlation matrix is large compared to the sample size. The test statistic is the sum of the squared correlation coefficients in the sample. We derive its limiting null distribution as the number of variables as well as the sample size converge to infinity. A Monte Carlo simulation finds both size and power for finite samples to be suitable. We apply the test to the vector of default rates, a risk factor in portfolio credit risk, in different sectors of the German economy.