{"title":"脂质极性头取向意义的计算机模拟研究","authors":"Krystian Kubica","doi":"10.1016/S0097-8485(01)00127-9","DOIUrl":null,"url":null,"abstract":"<div><p>Models of lipid bilayer were extended and dipole structure of polar head in lipid molecules was included. As a result a wavy structure, resembling experimentally observed ‘ripple phase’, was obtained. The discussion on significance of interactions between dipoles that constitute polar part of the model membrane is presented. Assumptions of the model are closer to the real conditions and reflect the real phenomena much better. Dependence of the model system behaviour on dielectric permeability, ionic strength, and temperature was studied. An influence of reduced number of freedom degrees in the dipole system on the membrane properties was also considered. It was proved that if dielectric permeability of membrane polar part is significantly smaller than water dielectric permeability then the membrane model does not have to take into account changeability of dipole tilt towards membrane surface. This assumption becomes more significant for dielectric permeability <em>ε</em> approaching <em>ε</em>=80. Packing degree of hydrocarbon chains in hydrophobic part of the membrane is also responsible for the angle value between dipoles and the membrane surface. The model results are compared to experimental results obtained by means of fluorescence probe fluorescein-PE.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 4","pages":"Pages 351-356"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00127-9","citationCount":"16","resultStr":"{\"title\":\"Computer simulation studies on significance of lipid polar head orientation\",\"authors\":\"Krystian Kubica\",\"doi\":\"10.1016/S0097-8485(01)00127-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Models of lipid bilayer were extended and dipole structure of polar head in lipid molecules was included. As a result a wavy structure, resembling experimentally observed ‘ripple phase’, was obtained. The discussion on significance of interactions between dipoles that constitute polar part of the model membrane is presented. Assumptions of the model are closer to the real conditions and reflect the real phenomena much better. Dependence of the model system behaviour on dielectric permeability, ionic strength, and temperature was studied. An influence of reduced number of freedom degrees in the dipole system on the membrane properties was also considered. It was proved that if dielectric permeability of membrane polar part is significantly smaller than water dielectric permeability then the membrane model does not have to take into account changeability of dipole tilt towards membrane surface. This assumption becomes more significant for dielectric permeability <em>ε</em> approaching <em>ε</em>=80. Packing degree of hydrocarbon chains in hydrophobic part of the membrane is also responsible for the angle value between dipoles and the membrane surface. The model results are compared to experimental results obtained by means of fluorescence probe fluorescein-PE.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"26 4\",\"pages\":\"Pages 351-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00127-9\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848501001279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer simulation studies on significance of lipid polar head orientation
Models of lipid bilayer were extended and dipole structure of polar head in lipid molecules was included. As a result a wavy structure, resembling experimentally observed ‘ripple phase’, was obtained. The discussion on significance of interactions between dipoles that constitute polar part of the model membrane is presented. Assumptions of the model are closer to the real conditions and reflect the real phenomena much better. Dependence of the model system behaviour on dielectric permeability, ionic strength, and temperature was studied. An influence of reduced number of freedom degrees in the dipole system on the membrane properties was also considered. It was proved that if dielectric permeability of membrane polar part is significantly smaller than water dielectric permeability then the membrane model does not have to take into account changeability of dipole tilt towards membrane surface. This assumption becomes more significant for dielectric permeability ε approaching ε=80. Packing degree of hydrocarbon chains in hydrophobic part of the membrane is also responsible for the angle value between dipoles and the membrane surface. The model results are compared to experimental results obtained by means of fluorescence probe fluorescein-PE.