联合自适应损失和l2/ 10范数最小化的无监督特征选择

Mingjie Qian, ChengXiang Zhai
{"title":"联合自适应损失和l2/ 10范数最小化的无监督特征选择","authors":"Mingjie Qian, ChengXiang Zhai","doi":"10.1109/IJCNN.2015.7280307","DOIUrl":null,"url":null,"abstract":"Unsupervised feature selection is a useful tool for reducing the complexity and improving the generalization performance of data mining tasks. In this paper, we propose an Adaptive Unsupervised Feature Selection (AUFS) algorithm with explicit l2/l0-norm minimization. We use a joint adaptive loss for data fitting and a l2/l0 minimization for feature selection. We solve the optimization problem with an efficient iterative algorithm and prove that all the expected properties of unsupervised feature selection can be preserved. We also show that the computational complexity and memory use is only linear to the number of instances and square to the number of clusters. Experiments show that our algorithm outperforms the state-of-the-arts on seven different benchmark data sets.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"52 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Joint adaptive loss and l2/l0-norm minimization for unsupervised feature selection\",\"authors\":\"Mingjie Qian, ChengXiang Zhai\",\"doi\":\"10.1109/IJCNN.2015.7280307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised feature selection is a useful tool for reducing the complexity and improving the generalization performance of data mining tasks. In this paper, we propose an Adaptive Unsupervised Feature Selection (AUFS) algorithm with explicit l2/l0-norm minimization. We use a joint adaptive loss for data fitting and a l2/l0 minimization for feature selection. We solve the optimization problem with an efficient iterative algorithm and prove that all the expected properties of unsupervised feature selection can be preserved. We also show that the computational complexity and memory use is only linear to the number of instances and square to the number of clusters. Experiments show that our algorithm outperforms the state-of-the-arts on seven different benchmark data sets.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"52 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

无监督特征选择是降低数据挖掘任务复杂性和提高数据挖掘泛化性能的有效工具。在本文中,我们提出了一种具有显式l2/ 10范数最小化的自适应无监督特征选择(AUFS)算法。我们使用联合自适应损失进行数据拟合,并使用l2/ 10最小化进行特征选择。我们用一种高效的迭代算法解决了优化问题,并证明了无监督特征选择的所有预期性质都可以保持。我们还表明,计算复杂度和内存使用仅与实例数量成线性关系,与集群数量成平方关系。实验表明,我们的算法在7个不同的基准数据集上的性能优于目前最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint adaptive loss and l2/l0-norm minimization for unsupervised feature selection
Unsupervised feature selection is a useful tool for reducing the complexity and improving the generalization performance of data mining tasks. In this paper, we propose an Adaptive Unsupervised Feature Selection (AUFS) algorithm with explicit l2/l0-norm minimization. We use a joint adaptive loss for data fitting and a l2/l0 minimization for feature selection. We solve the optimization problem with an efficient iterative algorithm and prove that all the expected properties of unsupervised feature selection can be preserved. We also show that the computational complexity and memory use is only linear to the number of instances and square to the number of clusters. Experiments show that our algorithm outperforms the state-of-the-arts on seven different benchmark data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1