基于深度学习的配水网络泄漏检测

Hridik Punukollu, A. Vasan, K. Srinivasa Raju
{"title":"基于深度学习的配水网络泄漏检测","authors":"Hridik Punukollu, A. Vasan, K. Srinivasa Raju","doi":"10.1080/09715010.2022.2134742","DOIUrl":null,"url":null,"abstract":"ABSTRACT Two deep learning algorithms, namely, Convolutional Neural Network (CNN) and Recurrent Neural Network- Long Short Term Memory (LSTM), were used to classify the water distribution networks (WDN) as leaky or non-leaky. LeakDB dataset was employed to generate different leakage scenarios for Net 1 and Hanoi benchmark WDN. Three cases, (a) incipient leaks, (b) abrupt leaks, and (c) mixed leak situations, are employed for pressure and flow conditions. A total of 1000 scenarios have been employed, 80% for training and 20% for testing. Seven metrics for analyzing the performance of CNN and LSTM are training accuracy, testing accuracy, total accuracy, true positive rate, false positive rate, false negative rate & area under curve. The results obtained are compared with those of Kammoun, et al. (2021). CNN is performing slightly better than LSTM in several metrics for most scenarios. However, both CNN and LSTM performed most of the time with better accuracy than those used by Kammoun et al. (2021). Leak detection accuracy is in the range of 90.56–98.23 % for Net1 WDN, whereas it is 49–96.55 % for Hanoi WDN.","PeriodicalId":38206,"journal":{"name":"ISH Journal of Hydraulic Engineering","volume":"82 1","pages":"674 - 682"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leak detection in water distribution networks using deep learning\",\"authors\":\"Hridik Punukollu, A. Vasan, K. Srinivasa Raju\",\"doi\":\"10.1080/09715010.2022.2134742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Two deep learning algorithms, namely, Convolutional Neural Network (CNN) and Recurrent Neural Network- Long Short Term Memory (LSTM), were used to classify the water distribution networks (WDN) as leaky or non-leaky. LeakDB dataset was employed to generate different leakage scenarios for Net 1 and Hanoi benchmark WDN. Three cases, (a) incipient leaks, (b) abrupt leaks, and (c) mixed leak situations, are employed for pressure and flow conditions. A total of 1000 scenarios have been employed, 80% for training and 20% for testing. Seven metrics for analyzing the performance of CNN and LSTM are training accuracy, testing accuracy, total accuracy, true positive rate, false positive rate, false negative rate & area under curve. The results obtained are compared with those of Kammoun, et al. (2021). CNN is performing slightly better than LSTM in several metrics for most scenarios. However, both CNN and LSTM performed most of the time with better accuracy than those used by Kammoun et al. (2021). Leak detection accuracy is in the range of 90.56–98.23 % for Net1 WDN, whereas it is 49–96.55 % for Hanoi WDN.\",\"PeriodicalId\":38206,\"journal\":{\"name\":\"ISH Journal of Hydraulic Engineering\",\"volume\":\"82 1\",\"pages\":\"674 - 682\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISH Journal of Hydraulic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09715010.2022.2134742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISH Journal of Hydraulic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09715010.2022.2134742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用卷积神经网络(CNN)和递归神经网络-长短期记忆(LSTM)两种深度学习算法对供水网络(WDN)进行泄漏和非泄漏分类。利用LeakDB数据集对Net 1和Hanoi基准WDN生成不同的泄漏场景。三种情况,(a)初期泄漏,(b)突然泄漏和(c)混合泄漏情况,用于压力和流动条件。总共使用了1000个场景,80%用于培训,20%用于测试。分析CNN和LSTM性能的七个指标是训练准确率、测试准确率、总准确率、真阳性率、假阳性率、假阴性率和曲线下面积。所得结果与Kammoun, et al.(2021)的结果进行比较。在大多数情况下,CNN在几个指标上的表现略好于LSTM。然而,CNN和LSTM在大多数情况下都比Kammoun等人(2021)使用的准确率更高。Net1 WDN的泄漏检测准确率为90.56 - 98.23%,而河内WDN的泄漏检测准确率为49 - 96.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leak detection in water distribution networks using deep learning
ABSTRACT Two deep learning algorithms, namely, Convolutional Neural Network (CNN) and Recurrent Neural Network- Long Short Term Memory (LSTM), were used to classify the water distribution networks (WDN) as leaky or non-leaky. LeakDB dataset was employed to generate different leakage scenarios for Net 1 and Hanoi benchmark WDN. Three cases, (a) incipient leaks, (b) abrupt leaks, and (c) mixed leak situations, are employed for pressure and flow conditions. A total of 1000 scenarios have been employed, 80% for training and 20% for testing. Seven metrics for analyzing the performance of CNN and LSTM are training accuracy, testing accuracy, total accuracy, true positive rate, false positive rate, false negative rate & area under curve. The results obtained are compared with those of Kammoun, et al. (2021). CNN is performing slightly better than LSTM in several metrics for most scenarios. However, both CNN and LSTM performed most of the time with better accuracy than those used by Kammoun et al. (2021). Leak detection accuracy is in the range of 90.56–98.23 % for Net1 WDN, whereas it is 49–96.55 % for Hanoi WDN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISH Journal of Hydraulic Engineering
ISH Journal of Hydraulic Engineering Engineering-Civil and Structural Engineering
CiteScore
4.30
自引率
0.00%
发文量
59
期刊最新文献
Symmetrical fully coupled numerical model for efficient dam–reservoir interaction analysis in time domain A comparative study on the modeling of soil erosion by USLE, RUSLE, and USPED Potential impacts of saline groundwater pumping on seawater intrusion in a coastal aquifer system Evaluating the impact of porcupine systems in the flow field of the river: a hydrodynamic model study Analysis of morphometric characteristics and prioritization of micro watersheds of Karamnasa River Basin using remote sensing & GIS technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1