基于改进鲸鱼优化算法的软件定义网络负载均衡策略

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of High Speed Networks Pub Date : 2021-01-01 DOI:10.3233/JHS-210657
S. Darade, M. Akkalakshmi
{"title":"基于改进鲸鱼优化算法的软件定义网络负载均衡策略","authors":"S. Darade, M. Akkalakshmi","doi":"10.3233/JHS-210657","DOIUrl":null,"url":null,"abstract":"From the recent study, it is observed that even though cloud computing grants the greatest performance in the case of storage, computing, and networking services, the Internet of Things (IoT) still suffers from high processing latency, awareness of location, and least mobility support. To address these issues, this paper integrates fog computing and Software-Defined Networking (SDN). Importantly, fog computing does the extension of computing and storing to the network edge that could minimize the latency along with mobility support. Further, this paper aims to incorporate a new optimization strategy to address the “Load balancing” problem in terms of latency minimization. A new Thresholded-Whale Optimization Algorithm (T-WOA) is introduced for the optimal selection of load distribution coefficient (time allocation for doing a task). Finally, the performance of the proposed model is compared with other conventional models concerning latency. The simulation results prove that the SDN based T-WOA algorithm could efficiently minimize the latency and improve the Quality of Service (QoS) in Software Defined Cloud/Fog architecture.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"20 1","pages":"151-167"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Load balancing strategy in software defined network by improved whale optimization algorithm\",\"authors\":\"S. Darade, M. Akkalakshmi\",\"doi\":\"10.3233/JHS-210657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the recent study, it is observed that even though cloud computing grants the greatest performance in the case of storage, computing, and networking services, the Internet of Things (IoT) still suffers from high processing latency, awareness of location, and least mobility support. To address these issues, this paper integrates fog computing and Software-Defined Networking (SDN). Importantly, fog computing does the extension of computing and storing to the network edge that could minimize the latency along with mobility support. Further, this paper aims to incorporate a new optimization strategy to address the “Load balancing” problem in terms of latency minimization. A new Thresholded-Whale Optimization Algorithm (T-WOA) is introduced for the optimal selection of load distribution coefficient (time allocation for doing a task). Finally, the performance of the proposed model is compared with other conventional models concerning latency. The simulation results prove that the SDN based T-WOA algorithm could efficiently minimize the latency and improve the Quality of Service (QoS) in Software Defined Cloud/Fog architecture.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"20 1\",\"pages\":\"151-167\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JHS-210657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JHS-210657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

从最近的研究中可以观察到,尽管云计算在存储、计算和网络服务方面提供了最大的性能,但物联网(IoT)仍然存在高处理延迟、位置感知和最少移动支持的问题。为了解决这些问题,本文将雾计算与软件定义网络(SDN)相结合。重要的是,雾计算将计算和存储扩展到网络边缘,这可以最大限度地减少延迟以及移动性支持。此外,本文旨在结合一种新的优化策略来解决延迟最小化方面的“负载平衡”问题。提出了一种新的阈值鲸优化算法(T-WOA),用于优化选择负载分配系数(完成任务的时间分配)。最后,将该模型的性能与其他有关延迟的传统模型进行了比较。仿真结果表明,基于SDN的T-WOA算法在软件定义云/雾架构下能够有效地降低时延,提高服务质量(QoS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Load balancing strategy in software defined network by improved whale optimization algorithm
From the recent study, it is observed that even though cloud computing grants the greatest performance in the case of storage, computing, and networking services, the Internet of Things (IoT) still suffers from high processing latency, awareness of location, and least mobility support. To address these issues, this paper integrates fog computing and Software-Defined Networking (SDN). Importantly, fog computing does the extension of computing and storing to the network edge that could minimize the latency along with mobility support. Further, this paper aims to incorporate a new optimization strategy to address the “Load balancing” problem in terms of latency minimization. A new Thresholded-Whale Optimization Algorithm (T-WOA) is introduced for the optimal selection of load distribution coefficient (time allocation for doing a task). Finally, the performance of the proposed model is compared with other conventional models concerning latency. The simulation results prove that the SDN based T-WOA algorithm could efficiently minimize the latency and improve the Quality of Service (QoS) in Software Defined Cloud/Fog architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Speed Networks
Journal of High Speed Networks Computer Science-Computer Networks and Communications
CiteScore
1.80
自引率
11.10%
发文量
26
期刊介绍: The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge. The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity. The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.
期刊最新文献
Multitier scalable clustering wireless network design approach using honey bee ratel optimization Transmit antenna selection in M-MIMO system using metaheuristic aided model A comparison study of two implemented fuzzy-based models for decision of logical trust Research on fault detection and remote monitoring system of variable speed constant frequency wind turbine based on Internet of things Efficient dynamic IP datacasting mobility management based on LRS in mobile IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1