I. Bazyrov, R. R. Galeev, A. Ipatov, Ilya Kayeshkov, S. Simakov, I. Fayzullin, E. Shel, Aleksandr Sheremeev, A. Shurunov, A. Yakovlev, M. Bikkulov, Ruslan Gayaztdinov, R. Uchuev, A. Logvinyuk
{"title":"横向多级水力裂缝水平注入低渗透油藏水驱效率的动态控制","authors":"I. Bazyrov, R. R. Galeev, A. Ipatov, Ilya Kayeshkov, S. Simakov, I. Fayzullin, E. Shel, Aleksandr Sheremeev, A. Shurunov, A. Yakovlev, M. Bikkulov, Ruslan Gayaztdinov, R. Uchuev, A. Logvinyuk","doi":"10.2118/196739-ms","DOIUrl":null,"url":null,"abstract":"\n At the pilot area of the oilfield in the Khanty-Mansi Autonomous Okrug, pilot works are being carried out to increase the development efficiency of low-permeability reservoirs using horizontal production and injection wells with transverse multistage hydraulic fractures (A.Shurunov et al., 2018). The paper describes the results of one stage of pilot works – the shifting of the central horizontal well into the injection and equipping this well with a fiber-optic system (FOS) for monitoring the downhole temperature field (DTS) and vibroacoustic oscillations (DAS).\n This work is a continuation of the work (A.Shurunov et al., 2018) and (R.Galeev et al., 2018) in the field of development of delivery methods for FOS in multiple-fractured horizontal wells (MFHW), testing the technology of DTS and DAS to evaluate the effectiveness of waterflooding of low-permeability reservoirs and monitoring the propagation of waterflood-induced fractures in injection horizontal well with transverse multistage hydraulic fractures.","PeriodicalId":10977,"journal":{"name":"Day 2 Wed, October 23, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Control of the Efficiency of Waterflooding of Low-Permeability Reservoirs by Horizontal Injection Wells With Transverse Multi-Stage Hydraulic Fractures\",\"authors\":\"I. Bazyrov, R. R. Galeev, A. Ipatov, Ilya Kayeshkov, S. Simakov, I. Fayzullin, E. Shel, Aleksandr Sheremeev, A. Shurunov, A. Yakovlev, M. Bikkulov, Ruslan Gayaztdinov, R. Uchuev, A. Logvinyuk\",\"doi\":\"10.2118/196739-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n At the pilot area of the oilfield in the Khanty-Mansi Autonomous Okrug, pilot works are being carried out to increase the development efficiency of low-permeability reservoirs using horizontal production and injection wells with transverse multistage hydraulic fractures (A.Shurunov et al., 2018). The paper describes the results of one stage of pilot works – the shifting of the central horizontal well into the injection and equipping this well with a fiber-optic system (FOS) for monitoring the downhole temperature field (DTS) and vibroacoustic oscillations (DAS).\\n This work is a continuation of the work (A.Shurunov et al., 2018) and (R.Galeev et al., 2018) in the field of development of delivery methods for FOS in multiple-fractured horizontal wells (MFHW), testing the technology of DTS and DAS to evaluate the effectiveness of waterflooding of low-permeability reservoirs and monitoring the propagation of waterflood-induced fractures in injection horizontal well with transverse multistage hydraulic fractures.\",\"PeriodicalId\":10977,\"journal\":{\"name\":\"Day 2 Wed, October 23, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 23, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196739-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196739-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Control of the Efficiency of Waterflooding of Low-Permeability Reservoirs by Horizontal Injection Wells With Transverse Multi-Stage Hydraulic Fractures
At the pilot area of the oilfield in the Khanty-Mansi Autonomous Okrug, pilot works are being carried out to increase the development efficiency of low-permeability reservoirs using horizontal production and injection wells with transverse multistage hydraulic fractures (A.Shurunov et al., 2018). The paper describes the results of one stage of pilot works – the shifting of the central horizontal well into the injection and equipping this well with a fiber-optic system (FOS) for monitoring the downhole temperature field (DTS) and vibroacoustic oscillations (DAS).
This work is a continuation of the work (A.Shurunov et al., 2018) and (R.Galeev et al., 2018) in the field of development of delivery methods for FOS in multiple-fractured horizontal wells (MFHW), testing the technology of DTS and DAS to evaluate the effectiveness of waterflooding of low-permeability reservoirs and monitoring the propagation of waterflood-induced fractures in injection horizontal well with transverse multistage hydraulic fractures.