Hae-Soo Kim, Do Yeon Jeon, Ha-Nul Lee, Seong-Jin Hong, S. Nam, Jeongsik Choi, Y. Kwon, D. Moon, Young-sun Kim
{"title":"酸水解法提高绿茶提取物没食子酸含量","authors":"Hae-Soo Kim, Do Yeon Jeon, Ha-Nul Lee, Seong-Jin Hong, S. Nam, Jeongsik Choi, Y. Kwon, D. Moon, Young-sun Kim","doi":"10.5897/AJFS2020.2024","DOIUrl":null,"url":null,"abstract":"Gallic acid (GA) is a functional ingredient abundant in Chinese pu-erh tea. The aim of this study was to increase the GA content in green tea extracts using acid hydrolysis. (-)-Epigallocatechin gallate treated with 1 M hydrochloric acid at 110°C for 1 h resulted in a GA yield of 45.6%. However, under these conditions, (-)-epigallocatechin was easily oxidized and rendered undetectable. On applying the same treatment to green tea extracts of Korea-cultivated Chamnok, a native species, and Yabukita, the GA contents increased from 0.17 to 4.87, 0.28 to 5.33 and 0.17 to 4.44 mM, respectively. In Chamnok extracts prepared following harvesting at three different time points, the GA contents increased from 0.17 to 4.48, 0.12 to 5.16 and 0.06 to 5.71 mM. Therefore, it is possible to produce green tea extracts with high GA concentrations using simple acid hydrolysis. This will greatly benefit the production of functional ingredients and will be useful in the beverage industry. \n \n \n \n Key words: Domestic cultivar, EGCG, EGC, tannase.","PeriodicalId":7509,"journal":{"name":"African Journal of Food Science","volume":"61 1","pages":"100-106"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing gallic acid contents in green tea extracts using acid hydrolysis\",\"authors\":\"Hae-Soo Kim, Do Yeon Jeon, Ha-Nul Lee, Seong-Jin Hong, S. Nam, Jeongsik Choi, Y. Kwon, D. Moon, Young-sun Kim\",\"doi\":\"10.5897/AJFS2020.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallic acid (GA) is a functional ingredient abundant in Chinese pu-erh tea. The aim of this study was to increase the GA content in green tea extracts using acid hydrolysis. (-)-Epigallocatechin gallate treated with 1 M hydrochloric acid at 110°C for 1 h resulted in a GA yield of 45.6%. However, under these conditions, (-)-epigallocatechin was easily oxidized and rendered undetectable. On applying the same treatment to green tea extracts of Korea-cultivated Chamnok, a native species, and Yabukita, the GA contents increased from 0.17 to 4.87, 0.28 to 5.33 and 0.17 to 4.44 mM, respectively. In Chamnok extracts prepared following harvesting at three different time points, the GA contents increased from 0.17 to 4.48, 0.12 to 5.16 and 0.06 to 5.71 mM. Therefore, it is possible to produce green tea extracts with high GA concentrations using simple acid hydrolysis. This will greatly benefit the production of functional ingredients and will be useful in the beverage industry. \\n \\n \\n \\n Key words: Domestic cultivar, EGCG, EGC, tannase.\",\"PeriodicalId\":7509,\"journal\":{\"name\":\"African Journal of Food Science\",\"volume\":\"61 1\",\"pages\":\"100-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"African Journal of Food Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/AJFS2020.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/AJFS2020.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increasing gallic acid contents in green tea extracts using acid hydrolysis
Gallic acid (GA) is a functional ingredient abundant in Chinese pu-erh tea. The aim of this study was to increase the GA content in green tea extracts using acid hydrolysis. (-)-Epigallocatechin gallate treated with 1 M hydrochloric acid at 110°C for 1 h resulted in a GA yield of 45.6%. However, under these conditions, (-)-epigallocatechin was easily oxidized and rendered undetectable. On applying the same treatment to green tea extracts of Korea-cultivated Chamnok, a native species, and Yabukita, the GA contents increased from 0.17 to 4.87, 0.28 to 5.33 and 0.17 to 4.44 mM, respectively. In Chamnok extracts prepared following harvesting at three different time points, the GA contents increased from 0.17 to 4.48, 0.12 to 5.16 and 0.06 to 5.71 mM. Therefore, it is possible to produce green tea extracts with high GA concentrations using simple acid hydrolysis. This will greatly benefit the production of functional ingredients and will be useful in the beverage industry.
Key words: Domestic cultivar, EGCG, EGC, tannase.