{"title":"WI几乎足够了:再一次的或有支付","authors":"Ky-Giao C. Nguyen, Miguel Ambrona, Masayuki Abe","doi":"10.1145/3372297.3417888","DOIUrl":null,"url":null,"abstract":"The problem of fair exchange consists of interchanging goods between two parties that do not trust each other. Despite known impossibility results, recent works leverage the block-chain and zero-knowledge proofs to implement zero-knowledge contingent payment (zkCP) systems that make fair exchange of digital goods possible. Implementing these systems in a secure and efficient way is a big challenge, as evidenced by several unsuccessful attempts from the literature. Campanelli et al. (ACM CCS 2017) discovered a vulnerability on an existing zkCP proposal based on SNARKs (succinct non-interactive arguments of knowledge) and suggested several repairs. Fuchsbauer (ACM CCS 2019) found a flaw in the mentioned countermeasures. In particular, he showed that witness-indistinguishability (WI) is not sufficient for the zkCP schemes proposed by Campanelli et al. to be secure. In this work, we observe that a slightly stronger notion of WI, that we coin trapdoor subversion WI (tS-WI), rules out Fuchsbauer's attack. We formally define security properties for CP systems and show that, under tS-WI, Campanelli et al.'s proposal indeed satisfies these properties. Additionally, we explore alternative approaches to implement ZK (other than SNARKs) and develop a prototype, using it to demonstrate their potential. Our new ideas result in a protocol to sell ECDSA signatures with contingent payment that can be executed in less than $150$ milliseconds over a LAN network.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"WI is Almost Enough: Contingent Payment All Over Again\",\"authors\":\"Ky-Giao C. Nguyen, Miguel Ambrona, Masayuki Abe\",\"doi\":\"10.1145/3372297.3417888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of fair exchange consists of interchanging goods between two parties that do not trust each other. Despite known impossibility results, recent works leverage the block-chain and zero-knowledge proofs to implement zero-knowledge contingent payment (zkCP) systems that make fair exchange of digital goods possible. Implementing these systems in a secure and efficient way is a big challenge, as evidenced by several unsuccessful attempts from the literature. Campanelli et al. (ACM CCS 2017) discovered a vulnerability on an existing zkCP proposal based on SNARKs (succinct non-interactive arguments of knowledge) and suggested several repairs. Fuchsbauer (ACM CCS 2019) found a flaw in the mentioned countermeasures. In particular, he showed that witness-indistinguishability (WI) is not sufficient for the zkCP schemes proposed by Campanelli et al. to be secure. In this work, we observe that a slightly stronger notion of WI, that we coin trapdoor subversion WI (tS-WI), rules out Fuchsbauer's attack. We formally define security properties for CP systems and show that, under tS-WI, Campanelli et al.'s proposal indeed satisfies these properties. Additionally, we explore alternative approaches to implement ZK (other than SNARKs) and develop a prototype, using it to demonstrate their potential. Our new ideas result in a protocol to sell ECDSA signatures with contingent payment that can be executed in less than $150$ milliseconds over a LAN network.\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WI is Almost Enough: Contingent Payment All Over Again
The problem of fair exchange consists of interchanging goods between two parties that do not trust each other. Despite known impossibility results, recent works leverage the block-chain and zero-knowledge proofs to implement zero-knowledge contingent payment (zkCP) systems that make fair exchange of digital goods possible. Implementing these systems in a secure and efficient way is a big challenge, as evidenced by several unsuccessful attempts from the literature. Campanelli et al. (ACM CCS 2017) discovered a vulnerability on an existing zkCP proposal based on SNARKs (succinct non-interactive arguments of knowledge) and suggested several repairs. Fuchsbauer (ACM CCS 2019) found a flaw in the mentioned countermeasures. In particular, he showed that witness-indistinguishability (WI) is not sufficient for the zkCP schemes proposed by Campanelli et al. to be secure. In this work, we observe that a slightly stronger notion of WI, that we coin trapdoor subversion WI (tS-WI), rules out Fuchsbauer's attack. We formally define security properties for CP systems and show that, under tS-WI, Campanelli et al.'s proposal indeed satisfies these properties. Additionally, we explore alternative approaches to implement ZK (other than SNARKs) and develop a prototype, using it to demonstrate their potential. Our new ideas result in a protocol to sell ECDSA signatures with contingent payment that can be executed in less than $150$ milliseconds over a LAN network.