Valentin De Bortoli, A. Desolneux, B. Galerne, Arthur Leclaire
{"title":"高斯随机场中的冗余","authors":"Valentin De Bortoli, A. Desolneux, B. Galerne, Arthur Leclaire","doi":"10.1051/PS/2020010","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This study is motivated by applications of the a contrario method in image processing. We define similarity functions on local windows in random fields over discrete or continuous domains. We derive explicit Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in both discrete and continuous periodic settings. Finally, we present fast and accurate approximations of these non-asymptotic expressions using moment methods and matrix projections.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"95 4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Redundancy in Gaussian random fields\",\"authors\":\"Valentin De Bortoli, A. Desolneux, B. Galerne, Arthur Leclaire\",\"doi\":\"10.1051/PS/2020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This study is motivated by applications of the a contrario method in image processing. We define similarity functions on local windows in random fields over discrete or continuous domains. We derive explicit Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in both discrete and continuous periodic settings. Finally, we present fast and accurate approximations of these non-asymptotic expressions using moment methods and matrix projections.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"95 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/PS/2020010\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/PS/2020010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This study is motivated by applications of the a contrario method in image processing. We define similarity functions on local windows in random fields over discrete or continuous domains. We derive explicit Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in both discrete and continuous periodic settings. Finally, we present fast and accurate approximations of these non-asymptotic expressions using moment methods and matrix projections.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.