大地水准面模型验证和地形偏差

IF 0.9 Q4 REMOTE SENSING Journal of Geodetic Science Pub Date : 2022-01-01 DOI:10.1515/jogs-2022-0133
L. Sjöberg
{"title":"大地水准面模型验证和地形偏差","authors":"L. Sjöberg","doi":"10.1515/jogs-2022-0133","DOIUrl":null,"url":null,"abstract":"Abstract Recently a number of geoid campaigns were performed to verify different types of geoid and quasigeoid modeling techniques. Typically, GNSS-leveling was employed as an independent method, but in some cases zenith camera astronomic deflection data were also used in astrogeodetic determinations of the geoid and/or quasigeoid. However, due to the uncertainty in the topographic density distribution data (and thereby in orthometric heights), we conclude that neither GNSS-leveling nor astrogeodetic techniques can reliably verify differences between gravimetric geoid models at several centimeter levels in rough mountainous regions. This is because much the same topographic data are used both in the gravimetric geoid models and in their verifications by geometric and/or astrogeodetic geoid models. On the contrary, this is not a problem in verifying gravimetric quasigeoid models, as they are independent of the topographic density distribution, and so is the related normal height used in GNSS-leveling.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"43 1","pages":"38 - 41"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geoid model validation and topographic bias\",\"authors\":\"L. Sjöberg\",\"doi\":\"10.1515/jogs-2022-0133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently a number of geoid campaigns were performed to verify different types of geoid and quasigeoid modeling techniques. Typically, GNSS-leveling was employed as an independent method, but in some cases zenith camera astronomic deflection data were also used in astrogeodetic determinations of the geoid and/or quasigeoid. However, due to the uncertainty in the topographic density distribution data (and thereby in orthometric heights), we conclude that neither GNSS-leveling nor astrogeodetic techniques can reliably verify differences between gravimetric geoid models at several centimeter levels in rough mountainous regions. This is because much the same topographic data are used both in the gravimetric geoid models and in their verifications by geometric and/or astrogeodetic geoid models. On the contrary, this is not a problem in verifying gravimetric quasigeoid models, as they are independent of the topographic density distribution, and so is the related normal height used in GNSS-leveling.\",\"PeriodicalId\":44569,\"journal\":{\"name\":\"Journal of Geodetic Science\",\"volume\":\"43 1\",\"pages\":\"38 - 41\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodetic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jogs-2022-0133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2022-0133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要近年来进行了一系列大地水准面运动,以验证不同类型的大地水准面和拟大地水准面建模技术。一般来说,gnss水准测量是一种独立的方法,但在某些情况下,天顶相机天文偏转数据也被用于大地水准面和/或准大地水准面的天文大地测量。然而,由于地形密度分布数据的不确定性(因此在正测高度),我们得出结论,无论是gnss水准还是天文大地测量技术都不能可靠地验证粗糙山区几厘米水平上重力大地水准面模型之间的差异。这是因为在重力大地水准面模型和几何和/或天文大地水准面模型的验证中使用了大致相同的地形数据。相反,这在验证重力类地面模型时不是问题,因为它们与地形密度分布无关,gnss水准测量中使用的相关法向高度也与地形密度分布无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geoid model validation and topographic bias
Abstract Recently a number of geoid campaigns were performed to verify different types of geoid and quasigeoid modeling techniques. Typically, GNSS-leveling was employed as an independent method, but in some cases zenith camera astronomic deflection data were also used in astrogeodetic determinations of the geoid and/or quasigeoid. However, due to the uncertainty in the topographic density distribution data (and thereby in orthometric heights), we conclude that neither GNSS-leveling nor astrogeodetic techniques can reliably verify differences between gravimetric geoid models at several centimeter levels in rough mountainous regions. This is because much the same topographic data are used both in the gravimetric geoid models and in their verifications by geometric and/or astrogeodetic geoid models. On the contrary, this is not a problem in verifying gravimetric quasigeoid models, as they are independent of the topographic density distribution, and so is the related normal height used in GNSS-leveling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
期刊最新文献
Accurate computation of geoid-quasigeoid separation in mountainous region – A case study in Colorado with full extension to the experimental geoid region Metrica – An application for collecting and navigating to geodetic control network points. Part II: Practical verification A gap-filling algorithm selection strategy for GRACE and GRACE Follow-On time series based on hydrological signal characteristics of the individual river basins The three Swedish kings of geodesy – Speech at the NKG General Assembly dinner in 2022 On the connection of the Ecuadorian Vertical Datum to the IHRS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1