基于自主神经反应的Brugada综合征患者睡眠、运动和平视倾斜测试的多变量分类

M. Calvo, V. Rolle, D. Romero, N. Béhar, P. Gomis, P. Mabo, Alfredo I. Hernández
{"title":"基于自主神经反应的Brugada综合征患者睡眠、运动和平视倾斜测试的多变量分类","authors":"M. Calvo, V. Rolle, D. Romero, N. Béhar, P. Gomis, P. Mabo, Alfredo I. Hernández","doi":"10.23919/CinC49843.2019.9005882","DOIUrl":null,"url":null,"abstract":"Several autonomic markers were estimated overnight and during exercise and head-up tilt (HUT) testing for 44 BS patients, to design classifiers capable of distinguishing patients at different levels of risk. The classification performance of predictive models built from the optimization of a step-based machine-learning method were compared, so as to identify those autonomic protocols and markers best distinguishing between symptomatic and asymptomatic patients. Although exercise and HUT testing together led to better predictive results than when they were separately assessed, among all analyzed combinations, the night-based classifier presented the best performance (AUC = 95%), using the least amount of features. This optimal features subset was mostly composed of markers extracted between 4 a.m. - 5 a.m. Thus, results provide further evidence for the role of nighttime analysis, mainly during the last hours of sleep, for risk stratification in BS.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"24 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Classification of Brugada Syndrome Patients Based on the Autonomic Response During Sleep, Exercise and Head-up Tilt Testing\",\"authors\":\"M. Calvo, V. Rolle, D. Romero, N. Béhar, P. Gomis, P. Mabo, Alfredo I. Hernández\",\"doi\":\"10.23919/CinC49843.2019.9005882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several autonomic markers were estimated overnight and during exercise and head-up tilt (HUT) testing for 44 BS patients, to design classifiers capable of distinguishing patients at different levels of risk. The classification performance of predictive models built from the optimization of a step-based machine-learning method were compared, so as to identify those autonomic protocols and markers best distinguishing between symptomatic and asymptomatic patients. Although exercise and HUT testing together led to better predictive results than when they were separately assessed, among all analyzed combinations, the night-based classifier presented the best performance (AUC = 95%), using the least amount of features. This optimal features subset was mostly composed of markers extracted between 4 a.m. - 5 a.m. Thus, results provide further evidence for the role of nighttime analysis, mainly during the last hours of sleep, for risk stratification in BS.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"24 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对44名BS患者进行夜间、运动和头向上倾斜(HUT)测试时的几种自主神经标志物进行评估,以设计能够区分不同风险水平患者的分类器。比较基于步进的机器学习方法优化构建的预测模型的分类性能,以确定最能区分有症状和无症状患者的自主协议和标记。虽然运动和HUT测试一起比单独评估时产生更好的预测结果,但在所有分析组合中,使用最少特征的基于夜间的分类器表现出最佳性能(AUC = 95%)。这个最佳特征子集主要由凌晨4点至5点之间提取的标记组成。因此,结果为夜间分析(主要是在睡眠的最后几个小时)在BS风险分层中的作用提供了进一步的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate Classification of Brugada Syndrome Patients Based on the Autonomic Response During Sleep, Exercise and Head-up Tilt Testing
Several autonomic markers were estimated overnight and during exercise and head-up tilt (HUT) testing for 44 BS patients, to design classifiers capable of distinguishing patients at different levels of risk. The classification performance of predictive models built from the optimization of a step-based machine-learning method were compared, so as to identify those autonomic protocols and markers best distinguishing between symptomatic and asymptomatic patients. Although exercise and HUT testing together led to better predictive results than when they were separately assessed, among all analyzed combinations, the night-based classifier presented the best performance (AUC = 95%), using the least amount of features. This optimal features subset was mostly composed of markers extracted between 4 a.m. - 5 a.m. Thus, results provide further evidence for the role of nighttime analysis, mainly during the last hours of sleep, for risk stratification in BS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automated Approach Based on a Convolutional Neural Network for Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Multiobjective Optimization Approach to Localization of Ectopic Beats by Single Dipole: Case Study Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models A Comparative Analysis of HMM and CRF for Early Prediction of Sepsis Blocking L-Type Calcium Current Reduces Vulnerability to Re-Entry in Human iPSC-Derived Cardiomyocytes Tissue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1