从银行业大数据中提取名称实体识别的工具

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2020-04-01 DOI:10.4018/IJWSR.2020040102
C. Saju, S. Ravimaran
{"title":"从银行业大数据中提取名称实体识别的工具","authors":"C. Saju, S. Ravimaran","doi":"10.4018/IJWSR.2020040102","DOIUrl":null,"url":null,"abstract":"Generally,theInternetistheglobalsystemofinterconnectedcomputernetworks,connectingmillions ofcomputersaswellaspeople,andthusgeneratesamassivequantityofinformationonadailybasis. Thisleadstoextractingthenecessaryinformationusinginformationfiltering(IF)inseveraldomains. Inourimplementation,thenamedentityrecognition(NER)techniqueisemployedtoautomatically extract valuable data from the unstructured natural language texts. As several works has been outlinedindetectingnamedentities,plentyofverydifferentNERtoolsexistforseveraldomains. However,NERremainsagiantchallengesotosolvethisproblemweproposedanovelframeworkby combiningthreeefficientclassifiers.Thisarticleproposesathree-layeredneuralnetworkapproach withconditionalrandomfield(CRF),thePachinkoallocationmodel(PAM),andtheAdaptiveNeuroFuzzyInferenceSystem(ANFIS)fordetectingnamedentitiesinthreesteps.First,aclassifierbased onCRFisemployedtotraintheinputfile.Second,PAMisemployedtoboostthepreviousoutput createdbyCRFtoenhancethelabelannotation.Third,theANFIScapturesthedeepfeaturesofthe informationbyitselffromthepre-trainedinformationtoattainaccuratepredictions.Experimental resultsshowthatthelearnedmodelyieldsabankingdomainwitharecallrateof92%,aprecision rateof95%andF-measureof92%byimplementingitintheRPlatform. KEyWoRD Adaptive Neuro-Fuzzy Inference System, Conditional Random Field, Information Filtering, Named Entity Recognition, Natural Language Processing, Pachinko Allocation Model","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"47 1","pages":"18-39"},"PeriodicalIF":0.8000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Tool to Extract Name Entity Recognition From Big Data in Banking Sectors\",\"authors\":\"C. Saju, S. Ravimaran\",\"doi\":\"10.4018/IJWSR.2020040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally,theInternetistheglobalsystemofinterconnectedcomputernetworks,connectingmillions ofcomputersaswellaspeople,andthusgeneratesamassivequantityofinformationonadailybasis. Thisleadstoextractingthenecessaryinformationusinginformationfiltering(IF)inseveraldomains. Inourimplementation,thenamedentityrecognition(NER)techniqueisemployedtoautomatically extract valuable data from the unstructured natural language texts. As several works has been outlinedindetectingnamedentities,plentyofverydifferentNERtoolsexistforseveraldomains. However,NERremainsagiantchallengesotosolvethisproblemweproposedanovelframeworkby combiningthreeefficientclassifiers.Thisarticleproposesathree-layeredneuralnetworkapproach withconditionalrandomfield(CRF),thePachinkoallocationmodel(PAM),andtheAdaptiveNeuroFuzzyInferenceSystem(ANFIS)fordetectingnamedentitiesinthreesteps.First,aclassifierbased onCRFisemployedtotraintheinputfile.Second,PAMisemployedtoboostthepreviousoutput createdbyCRFtoenhancethelabelannotation.Third,theANFIScapturesthedeepfeaturesofthe informationbyitselffromthepre-trainedinformationtoattainaccuratepredictions.Experimental resultsshowthatthelearnedmodelyieldsabankingdomainwitharecallrateof92%,aprecision rateof95%andF-measureof92%byimplementingitintheRPlatform. KEyWoRD Adaptive Neuro-Fuzzy Inference System, Conditional Random Field, Information Filtering, Named Entity Recognition, Natural Language Processing, Pachinko Allocation Model\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"47 1\",\"pages\":\"18-39\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2020040102\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2020040102","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

一般是theInternetistheglobalsystemofinterconnectedcomputernetworks、connectingmillions ofcomputersaswellaspeople、andthusgeneratesamassivequantityofinformationonadailybasis。Thisleadstoextractingthenecessaryinformationusinginformationfiltering(IF)inseveraldomains。Inourimplementation,thenamedentityrecognition(NER)techniqueisemployedtoautomatically从unstructurednaturallanguage_文本中提取有价值的数据。[as]几个[作品][已经][outlinedindetectingnamedentities,plentyofverydifferentNERtoolsexistforseveraldomains]。然而,NERremainsagiantchallengesotosolvethisproblemweproposedanovelframeworkby combiningthreeefficientclassifiers。Thisarticleproposesathree-layeredneuralnetworkapproach withconditionalrandomfield(CRF)、thePachinkoallocationmodel(PAM)、andtheAdaptiveNeuroFuzzyInferenceSystem(ANFIS)fordetectingnamedentitiesinthreesteps。First,aclassifierbased onCRFisemployedtotraintheinputfile。Second,PAMisemployedtoboostthepreviousoutput createdbyCRFtoenhancethelabelannotation。Third,theANFIScapturesthedeepfeaturesofthe informationbyitselffromthepre-trainedinformationtoattainaccuratepredictions。Experimental resultsshowthatthelearnedmodelyieldsabankingdomainwitharecallrateof92%,aprecision rateof95%andF-measureof92%byimplementingitintheRPlatform。关键词自适应神经模糊推理系统,条件随机场,信息过滤,命名实体识别,自然语言处理,柏青哥分配模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Tool to Extract Name Entity Recognition From Big Data in Banking Sectors
Generally,theInternetistheglobalsystemofinterconnectedcomputernetworks,connectingmillions ofcomputersaswellaspeople,andthusgeneratesamassivequantityofinformationonadailybasis. Thisleadstoextractingthenecessaryinformationusinginformationfiltering(IF)inseveraldomains. Inourimplementation,thenamedentityrecognition(NER)techniqueisemployedtoautomatically extract valuable data from the unstructured natural language texts. As several works has been outlinedindetectingnamedentities,plentyofverydifferentNERtoolsexistforseveraldomains. However,NERremainsagiantchallengesotosolvethisproblemweproposedanovelframeworkby combiningthreeefficientclassifiers.Thisarticleproposesathree-layeredneuralnetworkapproach withconditionalrandomfield(CRF),thePachinkoallocationmodel(PAM),andtheAdaptiveNeuroFuzzyInferenceSystem(ANFIS)fordetectingnamedentitiesinthreesteps.First,aclassifierbased onCRFisemployedtotraintheinputfile.Second,PAMisemployedtoboostthepreviousoutput createdbyCRFtoenhancethelabelannotation.Third,theANFIScapturesthedeepfeaturesofthe informationbyitselffromthepre-trainedinformationtoattainaccuratepredictions.Experimental resultsshowthatthelearnedmodelyieldsabankingdomainwitharecallrateof92%,aprecision rateof95%andF-measureof92%byimplementingitintheRPlatform. KEyWoRD Adaptive Neuro-Fuzzy Inference System, Conditional Random Field, Information Filtering, Named Entity Recognition, Natural Language Processing, Pachinko Allocation Model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1