使用三维生成对抗网络和循环卷积网络的形状绘制

Weiyue Wang, Qiangui Huang, Suya You, Chao Yang, U. Neumann
{"title":"使用三维生成对抗网络和循环卷积网络的形状绘制","authors":"Weiyue Wang, Qiangui Huang, Suya You, Chao Yang, U. Neumann","doi":"10.1109/ICCV.2017.252","DOIUrl":null,"url":null,"abstract":"Recent advances in convolutional neural networks have shown promising results in 3D shape completion. But due to GPU memory limitations, these methods can only produce low-resolution outputs. To inpaint 3D models with semantic plausibility and contextual details, we introduce a hybrid framework that combines a 3D Encoder-Decoder Generative Adversarial Network (3D-ED-GAN) and a Longterm Recurrent Convolutional Network (LRCN). The 3DED- GAN is a 3D convolutional neural network trained with a generative adversarial paradigm to fill missing 3D data in low-resolution. LRCN adopts a recurrent neural network architecture to minimize GPU memory usage and incorporates an Encoder-Decoder pair into a Long Shortterm Memory Network. By handling the 3D model as a sequence of 2D slices, LRCN transforms a coarse 3D shape into a more complete and higher resolution volume. While 3D-ED-GAN captures global contextual structure of the 3D shape, LRCN localizes the fine-grained details. Experimental results on both real-world and synthetic data show reconstructions from corrupted models result in complete and high-resolution 3D objects.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"46 1","pages":"2317-2325"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":"{\"title\":\"Shape Inpainting Using 3D Generative Adversarial Network and Recurrent Convolutional Networks\",\"authors\":\"Weiyue Wang, Qiangui Huang, Suya You, Chao Yang, U. Neumann\",\"doi\":\"10.1109/ICCV.2017.252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in convolutional neural networks have shown promising results in 3D shape completion. But due to GPU memory limitations, these methods can only produce low-resolution outputs. To inpaint 3D models with semantic plausibility and contextual details, we introduce a hybrid framework that combines a 3D Encoder-Decoder Generative Adversarial Network (3D-ED-GAN) and a Longterm Recurrent Convolutional Network (LRCN). The 3DED- GAN is a 3D convolutional neural network trained with a generative adversarial paradigm to fill missing 3D data in low-resolution. LRCN adopts a recurrent neural network architecture to minimize GPU memory usage and incorporates an Encoder-Decoder pair into a Long Shortterm Memory Network. By handling the 3D model as a sequence of 2D slices, LRCN transforms a coarse 3D shape into a more complete and higher resolution volume. While 3D-ED-GAN captures global contextual structure of the 3D shape, LRCN localizes the fine-grained details. Experimental results on both real-world and synthetic data show reconstructions from corrupted models result in complete and high-resolution 3D objects.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"46 1\",\"pages\":\"2317-2325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"150\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 150

摘要

卷积神经网络的最新进展在三维形状补全方面显示出有希望的结果。但是由于GPU内存的限制,这些方法只能产生低分辨率输出。为了绘制具有语义合理性和上下文细节的3D模型,我们引入了一个混合框架,该框架结合了3D编码器-解码器生成对抗网络(3D- ed - gan)和长期循环卷积网络(LRCN)。3DED- GAN是一种用生成对抗范式训练的3D卷积神经网络,用于填补低分辨率缺失的3D数据。LRCN采用循环神经网络架构,最大限度地减少GPU内存使用,并将编码器-解码器对集成到长短期记忆网络中。LRCN通过将3D模型处理为一系列2D切片,将粗糙的3D形状转换为更完整、更高分辨率的体积。3D- ed - gan捕获3D形状的全局上下文结构,而LRCN则定位细粒度细节。真实世界和合成数据的实验结果表明,损坏模型的重建结果是完整和高分辨率的3D物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape Inpainting Using 3D Generative Adversarial Network and Recurrent Convolutional Networks
Recent advances in convolutional neural networks have shown promising results in 3D shape completion. But due to GPU memory limitations, these methods can only produce low-resolution outputs. To inpaint 3D models with semantic plausibility and contextual details, we introduce a hybrid framework that combines a 3D Encoder-Decoder Generative Adversarial Network (3D-ED-GAN) and a Longterm Recurrent Convolutional Network (LRCN). The 3DED- GAN is a 3D convolutional neural network trained with a generative adversarial paradigm to fill missing 3D data in low-resolution. LRCN adopts a recurrent neural network architecture to minimize GPU memory usage and incorporates an Encoder-Decoder pair into a Long Shortterm Memory Network. By handling the 3D model as a sequence of 2D slices, LRCN transforms a coarse 3D shape into a more complete and higher resolution volume. While 3D-ED-GAN captures global contextual structure of the 3D shape, LRCN localizes the fine-grained details. Experimental results on both real-world and synthetic data show reconstructions from corrupted models result in complete and high-resolution 3D objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1