{"title":"巴西红碧玺的光谱特征及颜色来源","authors":"Ming Li","doi":"10.1155/2022/1769710","DOIUrl":null,"url":null,"abstract":"In the present paper, I report on the spectroscopic study for tourmaline color origin, performed red samples from Minas Geras State, Brazil, by gemological routine testing, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The main goal was the analysis of the optical absorption spectra and the chemical states of transition metal cations in order to better understand the effect of transition metal cations on color of tourmaline. The results showed that the red color was confirmed by the symmetric broad absorption at 527 nm and the narrow absorption at 400 and 450 nm, and the above three absorption bands were caused by the d-d electron transition of Mn3+, which occupied the Y site in the crystal structure and coordinated with F to form bonds. In addition, in principle, the chemical states of the chromogenic ions in tourmaline and their influence on coloration were confirmed, which would be beneficial to assessing the color change and identifying the origin of tourmaline.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectroscopic Characteristics and Color Origin of Red Tourmaline from Brazil\",\"authors\":\"Ming Li\",\"doi\":\"10.1155/2022/1769710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, I report on the spectroscopic study for tourmaline color origin, performed red samples from Minas Geras State, Brazil, by gemological routine testing, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The main goal was the analysis of the optical absorption spectra and the chemical states of transition metal cations in order to better understand the effect of transition metal cations on color of tourmaline. The results showed that the red color was confirmed by the symmetric broad absorption at 527 nm and the narrow absorption at 400 and 450 nm, and the above three absorption bands were caused by the d-d electron transition of Mn3+, which occupied the Y site in the crystal structure and coordinated with F to form bonds. In addition, in principle, the chemical states of the chromogenic ions in tourmaline and their influence on coloration were confirmed, which would be beneficial to assessing the color change and identifying the origin of tourmaline.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1769710\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/1769710","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spectroscopic Characteristics and Color Origin of Red Tourmaline from Brazil
In the present paper, I report on the spectroscopic study for tourmaline color origin, performed red samples from Minas Geras State, Brazil, by gemological routine testing, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The main goal was the analysis of the optical absorption spectra and the chemical states of transition metal cations in order to better understand the effect of transition metal cations on color of tourmaline. The results showed that the red color was confirmed by the symmetric broad absorption at 527 nm and the narrow absorption at 400 and 450 nm, and the above three absorption bands were caused by the d-d electron transition of Mn3+, which occupied the Y site in the crystal structure and coordinated with F to form bonds. In addition, in principle, the chemical states of the chromogenic ions in tourmaline and their influence on coloration were confirmed, which would be beneficial to assessing the color change and identifying the origin of tourmaline.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.