基于符号传递熵的脑磁图分析

Bihan Zhang, Chuchu Ding, Wei Yan, Li Guo, Jun Wang, F. Hou
{"title":"基于符号传递熵的脑磁图分析","authors":"Bihan Zhang, Chuchu Ding, Wei Yan, Li Guo, Jun Wang, F. Hou","doi":"10.1109/CISP-BMEI.2017.8302087","DOIUrl":null,"url":null,"abstract":"In this paper, we symbolize two kinds of different channels of Magnetoencephalography(MEG) and analyze their coupling relationship using symbolic transfer entropy algorithm. We record MEG signals from six depressive disorders and nine healthy subjects stimulated by positive, neutral, and negative emotional pictures and explore coupling relationship of different MEG channels. The results show that there are obvious differences on correlations between two channels of MLP32 and MRP32 with positive emotional stimulus, MLP31 and MRP31 with neutral emotional stimulus, MLP53 and MRP53 with negative emotional stimulus. In general, these channels have more correlation in patients with major depression, and can be able to distinguish depression patient from crowd. It also shows that the research of symbolic transfer entropy in MEG channel can distinguish the difference between normal and case samples, which of significance for clinical pathological estimation and diagnosis.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of Magnetoencephalography based on symbolic transfer entropy\",\"authors\":\"Bihan Zhang, Chuchu Ding, Wei Yan, Li Guo, Jun Wang, F. Hou\",\"doi\":\"10.1109/CISP-BMEI.2017.8302087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we symbolize two kinds of different channels of Magnetoencephalography(MEG) and analyze their coupling relationship using symbolic transfer entropy algorithm. We record MEG signals from six depressive disorders and nine healthy subjects stimulated by positive, neutral, and negative emotional pictures and explore coupling relationship of different MEG channels. The results show that there are obvious differences on correlations between two channels of MLP32 and MRP32 with positive emotional stimulus, MLP31 and MRP31 with neutral emotional stimulus, MLP53 and MRP53 with negative emotional stimulus. In general, these channels have more correlation in patients with major depression, and can be able to distinguish depression patient from crowd. It also shows that the research of symbolic transfer entropy in MEG channel can distinguish the difference between normal and case samples, which of significance for clinical pathological estimation and diagnosis.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"36 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8302087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用符号传递熵算法对两种不同的脑磁图通道进行符号化,分析了它们之间的耦合关系。我们记录了6名抑郁症患者和9名健康受试者在积极、中性和消极情绪图片刺激下的脑电信号,探讨了脑电信号不同通道的耦合关系。结果表明,MLP32和MRP32通道与积极情绪刺激、MLP31和MRP31与中性情绪刺激、MLP53和MRP53与消极情绪刺激的相关性存在明显差异。总的来说,这些通道在重度抑郁症患者中相关性更强,可以区分抑郁症患者和人群。研究脑磁图通道的符号传递熵可以区分正常样本和病例样本,对临床病理判断和诊断具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Magnetoencephalography based on symbolic transfer entropy
In this paper, we symbolize two kinds of different channels of Magnetoencephalography(MEG) and analyze their coupling relationship using symbolic transfer entropy algorithm. We record MEG signals from six depressive disorders and nine healthy subjects stimulated by positive, neutral, and negative emotional pictures and explore coupling relationship of different MEG channels. The results show that there are obvious differences on correlations between two channels of MLP32 and MRP32 with positive emotional stimulus, MLP31 and MRP31 with neutral emotional stimulus, MLP53 and MRP53 with negative emotional stimulus. In general, these channels have more correlation in patients with major depression, and can be able to distinguish depression patient from crowd. It also shows that the research of symbolic transfer entropy in MEG channel can distinguish the difference between normal and case samples, which of significance for clinical pathological estimation and diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1