J. Song, M. M. Oo, Su Yeon Park, 서문원, Seong-Chan Lee, 전낙범, M. Nam, Y. Lee, Hong-gi Kim, 오상근
{"title":"引起瓜类细菌性果斑病的瓜酸霉种内遗传多样性分析","authors":"J. Song, M. M. Oo, Su Yeon Park, 서문원, Seong-Chan Lee, 전낙범, M. Nam, Y. Lee, Hong-gi Kim, 오상근","doi":"10.7744/KJOAS.20180086","DOIUrl":null,"url":null,"abstract":"Bacterial fruit blotch (BFB) caused by Acidovorax citrulli is a devastating disease found in many cucurbits cultivation fields. The genetic diversity for 29 strains of A. citrulli collected from various cucurbits in South Korea was determined by DNA fingerprinting with a pathogenicity test, multi locus analysis, Rep-PCR (repetitive sequence polymerase chain reaction), and URP (universal rice primers) PCR bands. Two distinct groups (Korean Clonal Complex, KCC1 and KCC2) in the population were identified based on group specific genetic variation in the multi locus phylogeny using six conserved loci and showed a very high similarity with DNA sequences for representative foreign groups [the group I (CC1-1 type) and the group II (CC2-5 type)] widely distributed worldwide, respectively. Additionally, in the case of phaC, a new genotype was found within each Korean group. The KCC1 was more heterogeneous compared to the KCC2. The KCC1 recovered mainly from melons and watermelons (ratio of 6 : 3) and 15 of the 20 KCC2 strains recovered from watermelons were dominant in the pathogen population. Accordingly, this study found that two distinct groups of differentiated A. citrulli exist in South Korea, genetically very similar to representative foreign groups, with a new genotype in each group resulting in their genetic diversity.","PeriodicalId":17916,"journal":{"name":"Korean Journal of Agricultural Science","volume":"7 1","pages":"575-582"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of intraspecific genetic diversity in Acidovorax citrulli causing bacterial fruit blotch on cucurbits in Korea\",\"authors\":\"J. Song, M. M. Oo, Su Yeon Park, 서문원, Seong-Chan Lee, 전낙범, M. Nam, Y. Lee, Hong-gi Kim, 오상근\",\"doi\":\"10.7744/KJOAS.20180086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial fruit blotch (BFB) caused by Acidovorax citrulli is a devastating disease found in many cucurbits cultivation fields. The genetic diversity for 29 strains of A. citrulli collected from various cucurbits in South Korea was determined by DNA fingerprinting with a pathogenicity test, multi locus analysis, Rep-PCR (repetitive sequence polymerase chain reaction), and URP (universal rice primers) PCR bands. Two distinct groups (Korean Clonal Complex, KCC1 and KCC2) in the population were identified based on group specific genetic variation in the multi locus phylogeny using six conserved loci and showed a very high similarity with DNA sequences for representative foreign groups [the group I (CC1-1 type) and the group II (CC2-5 type)] widely distributed worldwide, respectively. Additionally, in the case of phaC, a new genotype was found within each Korean group. The KCC1 was more heterogeneous compared to the KCC2. The KCC1 recovered mainly from melons and watermelons (ratio of 6 : 3) and 15 of the 20 KCC2 strains recovered from watermelons were dominant in the pathogen population. Accordingly, this study found that two distinct groups of differentiated A. citrulli exist in South Korea, genetically very similar to representative foreign groups, with a new genotype in each group resulting in their genetic diversity.\",\"PeriodicalId\":17916,\"journal\":{\"name\":\"Korean Journal of Agricultural Science\",\"volume\":\"7 1\",\"pages\":\"575-582\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Agricultural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7744/KJOAS.20180086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7744/KJOAS.20180086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of intraspecific genetic diversity in Acidovorax citrulli causing bacterial fruit blotch on cucurbits in Korea
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli is a devastating disease found in many cucurbits cultivation fields. The genetic diversity for 29 strains of A. citrulli collected from various cucurbits in South Korea was determined by DNA fingerprinting with a pathogenicity test, multi locus analysis, Rep-PCR (repetitive sequence polymerase chain reaction), and URP (universal rice primers) PCR bands. Two distinct groups (Korean Clonal Complex, KCC1 and KCC2) in the population were identified based on group specific genetic variation in the multi locus phylogeny using six conserved loci and showed a very high similarity with DNA sequences for representative foreign groups [the group I (CC1-1 type) and the group II (CC2-5 type)] widely distributed worldwide, respectively. Additionally, in the case of phaC, a new genotype was found within each Korean group. The KCC1 was more heterogeneous compared to the KCC2. The KCC1 recovered mainly from melons and watermelons (ratio of 6 : 3) and 15 of the 20 KCC2 strains recovered from watermelons were dominant in the pathogen population. Accordingly, this study found that two distinct groups of differentiated A. citrulli exist in South Korea, genetically very similar to representative foreign groups, with a new genotype in each group resulting in their genetic diversity.