{"title":"交通事故特征分析与碰撞严重程度预测","authors":"Sindhu Sumukha, C. GeorgePhilip","doi":"10.4018/ijcini.20211001.oa1","DOIUrl":null,"url":null,"abstract":"Vehicle crashes occur because of numerous factors. It leads to loss of lives and permanent incapacity. The budgetary expenses of both individuals as well as for the nation are influenced by vehicle crashes. According to Road accident statistics, a total of 464910 road accidents were reported in India, claiming 1,47,913 lives and causing injuries to 4,70,975 persons every year. In this work, the UK data set sourced from Kaggle is used. For the study, 17 attributes and 35k records of the year 2015 are considered. The data set is imbalanced, so to balance out the data, the over-sampling technique is used. Random Forest, Decision tree, Logistic Regression, and Gradient Naïve Bayes algorithms are used to predict the severity of Accidents. To evaluate the model, performance measures like Accuracy, Precision, Recall, F1-Score are used. When Accuracy, Precision, F1-Score performance measure is considered Random Forest yielded the best result. When Recall performance measure is used, Random forest for Fatal, Decision Trees for Serious, Logistic regression for Slight yielded the best result.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"31 1","pages":"1-18"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Traffic Accident Features and Crash Severity Prediction\",\"authors\":\"Sindhu Sumukha, C. GeorgePhilip\",\"doi\":\"10.4018/ijcini.20211001.oa1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle crashes occur because of numerous factors. It leads to loss of lives and permanent incapacity. The budgetary expenses of both individuals as well as for the nation are influenced by vehicle crashes. According to Road accident statistics, a total of 464910 road accidents were reported in India, claiming 1,47,913 lives and causing injuries to 4,70,975 persons every year. In this work, the UK data set sourced from Kaggle is used. For the study, 17 attributes and 35k records of the year 2015 are considered. The data set is imbalanced, so to balance out the data, the over-sampling technique is used. Random Forest, Decision tree, Logistic Regression, and Gradient Naïve Bayes algorithms are used to predict the severity of Accidents. To evaluate the model, performance measures like Accuracy, Precision, Recall, F1-Score are used. When Accuracy, Precision, F1-Score performance measure is considered Random Forest yielded the best result. When Recall performance measure is used, Random forest for Fatal, Decision Trees for Serious, Logistic regression for Slight yielded the best result.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"31 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.20211001.oa1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Analysis of Traffic Accident Features and Crash Severity Prediction
Vehicle crashes occur because of numerous factors. It leads to loss of lives and permanent incapacity. The budgetary expenses of both individuals as well as for the nation are influenced by vehicle crashes. According to Road accident statistics, a total of 464910 road accidents were reported in India, claiming 1,47,913 lives and causing injuries to 4,70,975 persons every year. In this work, the UK data set sourced from Kaggle is used. For the study, 17 attributes and 35k records of the year 2015 are considered. The data set is imbalanced, so to balance out the data, the over-sampling technique is used. Random Forest, Decision tree, Logistic Regression, and Gradient Naïve Bayes algorithms are used to predict the severity of Accidents. To evaluate the model, performance measures like Accuracy, Precision, Recall, F1-Score are used. When Accuracy, Precision, F1-Score performance measure is considered Random Forest yielded the best result. When Recall performance measure is used, Random forest for Fatal, Decision Trees for Serious, Logistic regression for Slight yielded the best result.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.