Kuang-Ching Wang, R. Brooks, C. Barrineau, Jon Oakley, Lu Yu, Qing Wang
{"title":"通过软件定义的交换解放互联网安全","authors":"Kuang-Ching Wang, R. Brooks, C. Barrineau, Jon Oakley, Lu Yu, Qing Wang","doi":"10.1145/3180465.3180475","DOIUrl":null,"url":null,"abstract":"With software defined networking and network function virtualization technologies, networks can be programmed to have customized processing and paths for different traffic at manageable costs and for massive numbers of applications. Now, picture a future Internet where each entity - a person, an organization, or an autonomous system - has the ability to choose how traffic in their respective network sessions is routed and processed between itself and its counterparts. The network is, essentially, liberated from today's homogeneous IP-based routing and limited connection options. To realize such a network paradigm, we propose a software defined exchange architecture that can provide the needed network programmability, session-level customization, and scale. We present a case study for traffic-analysis-resistant communication among individuals, campuses, or web services, where IP addresses no longer need to have a one-to-one correspondence with service providers.","PeriodicalId":20513,"journal":{"name":"Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Internet Security Liberated via Software Defined Exchanges\",\"authors\":\"Kuang-Ching Wang, R. Brooks, C. Barrineau, Jon Oakley, Lu Yu, Qing Wang\",\"doi\":\"10.1145/3180465.3180475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With software defined networking and network function virtualization technologies, networks can be programmed to have customized processing and paths for different traffic at manageable costs and for massive numbers of applications. Now, picture a future Internet where each entity - a person, an organization, or an autonomous system - has the ability to choose how traffic in their respective network sessions is routed and processed between itself and its counterparts. The network is, essentially, liberated from today's homogeneous IP-based routing and limited connection options. To realize such a network paradigm, we propose a software defined exchange architecture that can provide the needed network programmability, session-level customization, and scale. We present a case study for traffic-analysis-resistant communication among individuals, campuses, or web services, where IP addresses no longer need to have a one-to-one correspondence with service providers.\",\"PeriodicalId\":20513,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180465.3180475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180465.3180475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Internet Security Liberated via Software Defined Exchanges
With software defined networking and network function virtualization technologies, networks can be programmed to have customized processing and paths for different traffic at manageable costs and for massive numbers of applications. Now, picture a future Internet where each entity - a person, an organization, or an autonomous system - has the ability to choose how traffic in their respective network sessions is routed and processed between itself and its counterparts. The network is, essentially, liberated from today's homogeneous IP-based routing and limited connection options. To realize such a network paradigm, we propose a software defined exchange architecture that can provide the needed network programmability, session-level customization, and scale. We present a case study for traffic-analysis-resistant communication among individuals, campuses, or web services, where IP addresses no longer need to have a one-to-one correspondence with service providers.