使用节点关系进行分层分类

Tien-Dung Mai, T. Ngo, Duy-Dinh Le, D. Duong, Kiem Hoang, S. Satoh
{"title":"使用节点关系进行分层分类","authors":"Tien-Dung Mai, T. Ngo, Duy-Dinh Le, D. Duong, Kiem Hoang, S. Satoh","doi":"10.1109/ICIP.2016.7532410","DOIUrl":null,"url":null,"abstract":"Hierarchical classification is a computational efficient approach for large-scale image classification. The main challenging issue of this approach is to deal with error propagation. Irrelevant branching decision made at a parent node cannot be corrected at its child nodes in traversing the tree for classification. This paper presents a novel approach to reduce branching error at a node by taking its relative relationship into account. Given a node on the tree, we model each candidate branch by considering classification response of its child nodes, grandchild nodes and their differences with siblings. A maximum margin classifier is then applied to select the most discriminating candidate. Our proposed approach outperforms related approaches on Caltech-256, SUN-397 and ILSVRC2010-1K.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"4 1","pages":"514-518"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using node relationships for hierarchical classification\",\"authors\":\"Tien-Dung Mai, T. Ngo, Duy-Dinh Le, D. Duong, Kiem Hoang, S. Satoh\",\"doi\":\"10.1109/ICIP.2016.7532410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical classification is a computational efficient approach for large-scale image classification. The main challenging issue of this approach is to deal with error propagation. Irrelevant branching decision made at a parent node cannot be corrected at its child nodes in traversing the tree for classification. This paper presents a novel approach to reduce branching error at a node by taking its relative relationship into account. Given a node on the tree, we model each candidate branch by considering classification response of its child nodes, grandchild nodes and their differences with siblings. A maximum margin classifier is then applied to select the most discriminating candidate. Our proposed approach outperforms related approaches on Caltech-256, SUN-397 and ILSVRC2010-1K.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"4 1\",\"pages\":\"514-518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分层分类是一种计算效率高的大规模图像分类方法。这种方法的主要挑战问题是处理错误传播。在遍历树进行分类时,在父节点上做出的不相关分支决策不能在其子节点上得到纠正。本文提出了一种通过考虑节点的相对关系来减少节点分支误差的新方法。给定树上的一个节点,我们通过考虑其子节点、孙子节点及其与兄弟节点的差异的分类响应来建模每个候选分支。然后应用最大边际分类器来选择最具判别性的候选对象。我们提出的方法优于Caltech-256, SUN-397和ILSVRC2010-1K上的相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using node relationships for hierarchical classification
Hierarchical classification is a computational efficient approach for large-scale image classification. The main challenging issue of this approach is to deal with error propagation. Irrelevant branching decision made at a parent node cannot be corrected at its child nodes in traversing the tree for classification. This paper presents a novel approach to reduce branching error at a node by taking its relative relationship into account. Given a node on the tree, we model each candidate branch by considering classification response of its child nodes, grandchild nodes and their differences with siblings. A maximum margin classifier is then applied to select the most discriminating candidate. Our proposed approach outperforms related approaches on Caltech-256, SUN-397 and ILSVRC2010-1K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1