{"title":"即时策略游戏中的非对称行动抽象","authors":"Rubens O. Moraes, M. Nascimento, Levi H. S. Lelis","doi":"10.1613/jair.1.13769","DOIUrl":null,"url":null,"abstract":"Action abstractions restrict the number of legal actions available for real-time planning in zero-sum extensive-form games, thus allowing algorithms to focus their search on a set of promising actions. Even though unabstracted game trees can lead to optimal policies, due to real-time constraints and the tree size, they are not a practical choice. In this context, we introduce an action abstraction scheme which we call asymmetric action abstraction. Asymmetric abstractions allow search algorithms to “pay more attention” to some aspects of the game by unevenly dividing the algorithm’s search effort amongst different aspects of the game. We also introduce four algorithms that search in asymmetrically abstracted game trees to evaluate the effectiveness of our abstraction schemes. Two of our algorithms are adaptations of algorithms developed for searching in action-abstracted spaces, Portfolio Greedy Search and Stratified Strategy Selection, and the other two are adaptations of an algorithm developed for searching in unabstracted spaces, NaïveMCTS. An extensive set of experiments in a real-time strategy game shows that search algorithms using asymmetric abstractions are able to outperform all other search algorithms tested.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"18 1","pages":"1103-1137"},"PeriodicalIF":4.5000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Action Abstractions for Planning in Real-Time Strategy Games\",\"authors\":\"Rubens O. Moraes, M. Nascimento, Levi H. S. Lelis\",\"doi\":\"10.1613/jair.1.13769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Action abstractions restrict the number of legal actions available for real-time planning in zero-sum extensive-form games, thus allowing algorithms to focus their search on a set of promising actions. Even though unabstracted game trees can lead to optimal policies, due to real-time constraints and the tree size, they are not a practical choice. In this context, we introduce an action abstraction scheme which we call asymmetric action abstraction. Asymmetric abstractions allow search algorithms to “pay more attention” to some aspects of the game by unevenly dividing the algorithm’s search effort amongst different aspects of the game. We also introduce four algorithms that search in asymmetrically abstracted game trees to evaluate the effectiveness of our abstraction schemes. Two of our algorithms are adaptations of algorithms developed for searching in action-abstracted spaces, Portfolio Greedy Search and Stratified Strategy Selection, and the other two are adaptations of an algorithm developed for searching in unabstracted spaces, NaïveMCTS. An extensive set of experiments in a real-time strategy game shows that search algorithms using asymmetric abstractions are able to outperform all other search algorithms tested.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"18 1\",\"pages\":\"1103-1137\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13769\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13769","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Asymmetric Action Abstractions for Planning in Real-Time Strategy Games
Action abstractions restrict the number of legal actions available for real-time planning in zero-sum extensive-form games, thus allowing algorithms to focus their search on a set of promising actions. Even though unabstracted game trees can lead to optimal policies, due to real-time constraints and the tree size, they are not a practical choice. In this context, we introduce an action abstraction scheme which we call asymmetric action abstraction. Asymmetric abstractions allow search algorithms to “pay more attention” to some aspects of the game by unevenly dividing the algorithm’s search effort amongst different aspects of the game. We also introduce four algorithms that search in asymmetrically abstracted game trees to evaluate the effectiveness of our abstraction schemes. Two of our algorithms are adaptations of algorithms developed for searching in action-abstracted spaces, Portfolio Greedy Search and Stratified Strategy Selection, and the other two are adaptations of an algorithm developed for searching in unabstracted spaces, NaïveMCTS. An extensive set of experiments in a real-time strategy game shows that search algorithms using asymmetric abstractions are able to outperform all other search algorithms tested.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.