{"title":"英国电池能量管理策略增强频率响应","authors":"B. Gundogdu, S. Nejad, D. Gladwin, D. Stone","doi":"10.1109/ISIE.2017.8001218","DOIUrl":null,"url":null,"abstract":"Balancing the grid at 50 Hz requires managing many distributed generation sources against a varying load, which is becoming an increasingly challenging task due to the increased penetration of renewable energy sources such as wind and solar and loss of traditional generation which provide inertia to the system. In the UK, various frequency support services are available, which are developed to provide a real-time response to changes in the grid frequency. The National Grid (NG) — the main distribution network operator in the UK — have introduced a new and fast service called the Enhanced Frequency Response (EFR), which requires a response time of under one second. A battery energy storage system (BESS) is a suitable candidate for delivering such service. Therefore, in this paper a control algorithm is developed to provide a charge/discharge power output with respect to deviations in the grid frequency and the ramp-rate limits imposed by the NG, whilst managing the state-of-charge (SOC) of the BESS for an optimised utilisation of the available stored energy. Simulation results on a 2 MW/1 MWh lithium-titanate BESS are provided to verify the proposed algorithm based on the control of an experimentally validated battery model.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"37 1","pages":"26-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A battery energy management strategy for UK enhanced frequency response\",\"authors\":\"B. Gundogdu, S. Nejad, D. Gladwin, D. Stone\",\"doi\":\"10.1109/ISIE.2017.8001218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Balancing the grid at 50 Hz requires managing many distributed generation sources against a varying load, which is becoming an increasingly challenging task due to the increased penetration of renewable energy sources such as wind and solar and loss of traditional generation which provide inertia to the system. In the UK, various frequency support services are available, which are developed to provide a real-time response to changes in the grid frequency. The National Grid (NG) — the main distribution network operator in the UK — have introduced a new and fast service called the Enhanced Frequency Response (EFR), which requires a response time of under one second. A battery energy storage system (BESS) is a suitable candidate for delivering such service. Therefore, in this paper a control algorithm is developed to provide a charge/discharge power output with respect to deviations in the grid frequency and the ramp-rate limits imposed by the NG, whilst managing the state-of-charge (SOC) of the BESS for an optimised utilisation of the available stored energy. Simulation results on a 2 MW/1 MWh lithium-titanate BESS are provided to verify the proposed algorithm based on the control of an experimentally validated battery model.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"37 1\",\"pages\":\"26-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2017.8001218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A battery energy management strategy for UK enhanced frequency response
Balancing the grid at 50 Hz requires managing many distributed generation sources against a varying load, which is becoming an increasingly challenging task due to the increased penetration of renewable energy sources such as wind and solar and loss of traditional generation which provide inertia to the system. In the UK, various frequency support services are available, which are developed to provide a real-time response to changes in the grid frequency. The National Grid (NG) — the main distribution network operator in the UK — have introduced a new and fast service called the Enhanced Frequency Response (EFR), which requires a response time of under one second. A battery energy storage system (BESS) is a suitable candidate for delivering such service. Therefore, in this paper a control algorithm is developed to provide a charge/discharge power output with respect to deviations in the grid frequency and the ramp-rate limits imposed by the NG, whilst managing the state-of-charge (SOC) of the BESS for an optimised utilisation of the available stored energy. Simulation results on a 2 MW/1 MWh lithium-titanate BESS are provided to verify the proposed algorithm based on the control of an experimentally validated battery model.