{"title":"最大等级距离码作为空时码","authors":"P. Lusina, E. Gabidulin, M. Bossert","doi":"10.1109/TIT.2003.818023","DOIUrl":null,"url":null,"abstract":"The critical design criterion for space-time codes in asymptotically good channels is the minimum rank between codeword pairs. Rank codes are a two-dimensional matrix code construction where by the rank is the metric of merit. We look at the application of rank codes to space-time code design. In particular, we provide construction methods of full-rank codes over different complex signal constellations, for arbitrary numbers of antennas, and codeword periods. We also derive a Singleton-type bound on the rate of a code for the rank metric, and we show that rank codes satisfy this bound with equality.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"38 1","pages":"2757-2760"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":"{\"title\":\"Maximum rank distance codes as space-time codes\",\"authors\":\"P. Lusina, E. Gabidulin, M. Bossert\",\"doi\":\"10.1109/TIT.2003.818023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The critical design criterion for space-time codes in asymptotically good channels is the minimum rank between codeword pairs. Rank codes are a two-dimensional matrix code construction where by the rank is the metric of merit. We look at the application of rank codes to space-time code design. In particular, we provide construction methods of full-rank codes over different complex signal constellations, for arbitrary numbers of antennas, and codeword periods. We also derive a Singleton-type bound on the rate of a code for the rank metric, and we show that rank codes satisfy this bound with equality.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"38 1\",\"pages\":\"2757-2760\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.818023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.818023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The critical design criterion for space-time codes in asymptotically good channels is the minimum rank between codeword pairs. Rank codes are a two-dimensional matrix code construction where by the rank is the metric of merit. We look at the application of rank codes to space-time code design. In particular, we provide construction methods of full-rank codes over different complex signal constellations, for arbitrary numbers of antennas, and codeword periods. We also derive a Singleton-type bound on the rate of a code for the rank metric, and we show that rank codes satisfy this bound with equality.