{"title":"半假设导向的生物医学探索性分析","authors":"C. Shyu","doi":"10.1109/BIBM.2016.7822482","DOIUrl":null,"url":null,"abstract":"Medical research and clinical trials are often based on hypotheses that were observed from clinical practice with noticeable evidence. Forming clinically significant hypotheses will greatly benefit the success of clinical research and ensure both external and internal validity of the trial. In this talk, I will introduce a knowledge discovery approach to automatically identify populations of subjects with commonly occurred comorbidities, genotypes, and phenotypes that present statistically high contract between populations. To focus on a confined set of medical problems as most of medical researchers would like to target (hypertension and diabetes versus all chronic diseases), this approach is able to take a set of selected attributes of interest and expand knowledge discoveries from the initial set. The computational approach consists of a forward floating search method for population selection, a hierarchical frequent pattern mining tree to efficiently handle dense associations, contrast mining for identifying actionable plans, and accumulated contrast (ac-)index for ranking mining results for biomedical researchers. I will present exploratory analysis process and results from the Simon's Simplex Collection (SSC) by the Simons Foundation Autism Research Initiative (SFARI) which comprises data representing 11,560 individuals from 2,591 families. Putative autism subtypes were explored by partitioning families based on demographics and autism phenotypes. An extended contrast mining procedure identified genetic combinations showing preferential association for one of the contrasted subgroups, emphasizing combinations novel to the autistic proband within each family tree. Potentials for other biomedical applications will also be discussed.","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"72 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-hypothesis guided exploratory analysis for biomedical applications\",\"authors\":\"C. Shyu\",\"doi\":\"10.1109/BIBM.2016.7822482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical research and clinical trials are often based on hypotheses that were observed from clinical practice with noticeable evidence. Forming clinically significant hypotheses will greatly benefit the success of clinical research and ensure both external and internal validity of the trial. In this talk, I will introduce a knowledge discovery approach to automatically identify populations of subjects with commonly occurred comorbidities, genotypes, and phenotypes that present statistically high contract between populations. To focus on a confined set of medical problems as most of medical researchers would like to target (hypertension and diabetes versus all chronic diseases), this approach is able to take a set of selected attributes of interest and expand knowledge discoveries from the initial set. The computational approach consists of a forward floating search method for population selection, a hierarchical frequent pattern mining tree to efficiently handle dense associations, contrast mining for identifying actionable plans, and accumulated contrast (ac-)index for ranking mining results for biomedical researchers. I will present exploratory analysis process and results from the Simon's Simplex Collection (SSC) by the Simons Foundation Autism Research Initiative (SFARI) which comprises data representing 11,560 individuals from 2,591 families. Putative autism subtypes were explored by partitioning families based on demographics and autism phenotypes. An extended contrast mining procedure identified genetic combinations showing preferential association for one of the contrasted subgroups, emphasizing combinations novel to the autistic proband within each family tree. Potentials for other biomedical applications will also be discussed.\",\"PeriodicalId\":73283,\"journal\":{\"name\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"volume\":\"72 1\",\"pages\":\"9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学研究和临床试验往往基于从临床实践中观察到的假设,并有明显的证据。形成具有临床意义的假设将极大地有利于临床研究的成功,保证试验的外部效度和内部效度。在这次演讲中,我将介绍一种知识发现方法,用于自动识别具有常见合并症、基因型和表型的受试者群体,这些群体在统计上具有较高的相关性。为了专注于一组有限的医学问题,因为大多数医学研究人员都想要瞄准(高血压和糖尿病与所有慢性疾病),这种方法能够采用一组选定的感兴趣的属性,并从初始集扩展知识发现。计算方法包括人口选择的前向浮动搜索方法,高效处理密集关联的分层频繁模式挖掘树,识别可操作计划的对比挖掘,以及对生物医学研究人员挖掘结果排序的累积对比(ac-)指数。我将介绍西蒙基金会自闭症研究计划(SFARI)的西蒙单纯性集合(SSC)的探索性分析过程和结果,该集合包括来自2,591个家庭的11,560个人的数据。通过基于人口统计学和自闭症表型的家庭划分来探索假定的自闭症亚型。一个扩展的对比挖掘程序确定了对一个对比亚群显示优先关联的遗传组合,强调了每个家谱中自闭症先证的新组合。还将讨论其他生物医学应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-hypothesis guided exploratory analysis for biomedical applications
Medical research and clinical trials are often based on hypotheses that were observed from clinical practice with noticeable evidence. Forming clinically significant hypotheses will greatly benefit the success of clinical research and ensure both external and internal validity of the trial. In this talk, I will introduce a knowledge discovery approach to automatically identify populations of subjects with commonly occurred comorbidities, genotypes, and phenotypes that present statistically high contract between populations. To focus on a confined set of medical problems as most of medical researchers would like to target (hypertension and diabetes versus all chronic diseases), this approach is able to take a set of selected attributes of interest and expand knowledge discoveries from the initial set. The computational approach consists of a forward floating search method for population selection, a hierarchical frequent pattern mining tree to efficiently handle dense associations, contrast mining for identifying actionable plans, and accumulated contrast (ac-)index for ranking mining results for biomedical researchers. I will present exploratory analysis process and results from the Simon's Simplex Collection (SSC) by the Simons Foundation Autism Research Initiative (SFARI) which comprises data representing 11,560 individuals from 2,591 families. Putative autism subtypes were explored by partitioning families based on demographics and autism phenotypes. An extended contrast mining procedure identified genetic combinations showing preferential association for one of the contrasted subgroups, emphasizing combinations novel to the autistic proband within each family tree. Potentials for other biomedical applications will also be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data. Transmission cluster characteristics of global, regional, and lineage-specific SARS-CoV-2 phylogenies. Document-level DDI relation extraction with document-entity embedding The Network Pharmacological Mechanism of Yizhiningshen Oral Liquid in the Treatment of Tic Disorders Study on the Medication Law of Traditional Chinese medicine treating Lumbago based on TCM electronic medical record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1