油气保留和垂直运移的情况

G. Kaeng, K. Evans, F. Bebb, R. Head
{"title":"油气保留和垂直运移的情况","authors":"G. Kaeng, K. Evans, F. Bebb, R. Head","doi":"10.2118/208526-ms","DOIUrl":null,"url":null,"abstract":"\n Complex hydrocarbon charging and distribution in which reservoirs are filled by oil and gas phases with different densities and genetic types inter-fingering within the basin, are common phenomena, and often attributed to vertical migration. This paper discusses the factors that control vertical hydrocarbon migration and presents modelling of the hydrocarbon charging and entrapment history in a tertiary basin in Southeast Asia as a case study.\n According to the Young-Laplace flow theory of the secondary hydrocarbon migration mechanics, migration occurs in a state of capillary equilibrium in a flow regime dominated by buoyancy and capillary forces. In this study, the invasion percolation simulation algorithm, based on the Young-Laplace flow, was used. During the simulation, three-dimensional (3D) seismic data were used as the high-resolution base grid for migration to capture the effect of both structure and facies heterogeneities on fluid flow.\n A model of an unfaulted system was presented to make the case. In the study area there is inter-fingering between oil and gas across different formations; most oils are trapped in the deeper formation, oil and gas inter-fingering occurs in the middle formation, and the upper formation contains mostly gas. This arrangement is possible because of the interplay between the expelled fluid buoyancy and relatively weak intra-formational seals within the basin. The modeling results were then calibrated to known accumulations or fluid presence in wells. In a basin dominated by a vertical migration regime, hydrocarbons are prevented from travelling far from the kitchen, thus decreasing prospectivity away from the kitchen.\n Through a case study, this paper helps to understand the factors that influence hydrocarbon retention and migration that control fluid distribution within a basin. Eventually the study helps geologists to understand prospectivity risking related to hydrocarbon charging, which is one of the main risks in exploration especially in mature basins.","PeriodicalId":11215,"journal":{"name":"Day 2 Wed, November 24, 2021","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrocarbon Retention and the Case for Vertical Migration\",\"authors\":\"G. Kaeng, K. Evans, F. Bebb, R. Head\",\"doi\":\"10.2118/208526-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Complex hydrocarbon charging and distribution in which reservoirs are filled by oil and gas phases with different densities and genetic types inter-fingering within the basin, are common phenomena, and often attributed to vertical migration. This paper discusses the factors that control vertical hydrocarbon migration and presents modelling of the hydrocarbon charging and entrapment history in a tertiary basin in Southeast Asia as a case study.\\n According to the Young-Laplace flow theory of the secondary hydrocarbon migration mechanics, migration occurs in a state of capillary equilibrium in a flow regime dominated by buoyancy and capillary forces. In this study, the invasion percolation simulation algorithm, based on the Young-Laplace flow, was used. During the simulation, three-dimensional (3D) seismic data were used as the high-resolution base grid for migration to capture the effect of both structure and facies heterogeneities on fluid flow.\\n A model of an unfaulted system was presented to make the case. In the study area there is inter-fingering between oil and gas across different formations; most oils are trapped in the deeper formation, oil and gas inter-fingering occurs in the middle formation, and the upper formation contains mostly gas. This arrangement is possible because of the interplay between the expelled fluid buoyancy and relatively weak intra-formational seals within the basin. The modeling results were then calibrated to known accumulations or fluid presence in wells. In a basin dominated by a vertical migration regime, hydrocarbons are prevented from travelling far from the kitchen, thus decreasing prospectivity away from the kitchen.\\n Through a case study, this paper helps to understand the factors that influence hydrocarbon retention and migration that control fluid distribution within a basin. Eventually the study helps geologists to understand prospectivity risking related to hydrocarbon charging, which is one of the main risks in exploration especially in mature basins.\",\"PeriodicalId\":11215,\"journal\":{\"name\":\"Day 2 Wed, November 24, 2021\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, November 24, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208526-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, November 24, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208526-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

盆地内不同密度、不同成因类型的油气相相互充填,形成复杂的油气充注与分布,是盆地内常见的油气运移现象。本文讨论了控制油气垂向运移的因素,并以东南亚某第三系盆地为例,建立了油气充注和圈闭史模型。根据油气二次运移力学中的Young-Laplace流动理论,运移发生在以浮力和毛管力为主的流动状态下,处于毛管平衡状态。本研究采用基于Young-Laplace流的入侵渗流模拟算法。在模拟过程中,三维地震数据作为迁移的高分辨率基网格,以捕捉结构和相非均质性对流体流动的影响。提出了一个无故障系统的模型来说明这一点。研究区不同地层的油气相互交错;油主要集中在深层地层,油气互指发生在中部地层,上部地层以含气为主。这种排列可能是由于排出的流体浮力与盆地内相对较弱的地层内密封之间的相互作用。然后将建模结果校准为已知的油藏或井中存在的流体。在一个以垂直运移为主的盆地中,油气无法远离厨房,从而降低了远离厨房的勘探前景。通过实例研究,有助于了解控制盆地内流体分布的油气保留和运移影响因素。最终,该研究有助于地质学家了解与油气充注相关的远景风险,这是勘探中的主要风险之一,特别是在成熟盆地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrocarbon Retention and the Case for Vertical Migration
Complex hydrocarbon charging and distribution in which reservoirs are filled by oil and gas phases with different densities and genetic types inter-fingering within the basin, are common phenomena, and often attributed to vertical migration. This paper discusses the factors that control vertical hydrocarbon migration and presents modelling of the hydrocarbon charging and entrapment history in a tertiary basin in Southeast Asia as a case study. According to the Young-Laplace flow theory of the secondary hydrocarbon migration mechanics, migration occurs in a state of capillary equilibrium in a flow regime dominated by buoyancy and capillary forces. In this study, the invasion percolation simulation algorithm, based on the Young-Laplace flow, was used. During the simulation, three-dimensional (3D) seismic data were used as the high-resolution base grid for migration to capture the effect of both structure and facies heterogeneities on fluid flow. A model of an unfaulted system was presented to make the case. In the study area there is inter-fingering between oil and gas across different formations; most oils are trapped in the deeper formation, oil and gas inter-fingering occurs in the middle formation, and the upper formation contains mostly gas. This arrangement is possible because of the interplay between the expelled fluid buoyancy and relatively weak intra-formational seals within the basin. The modeling results were then calibrated to known accumulations or fluid presence in wells. In a basin dominated by a vertical migration regime, hydrocarbons are prevented from travelling far from the kitchen, thus decreasing prospectivity away from the kitchen. Through a case study, this paper helps to understand the factors that influence hydrocarbon retention and migration that control fluid distribution within a basin. Eventually the study helps geologists to understand prospectivity risking related to hydrocarbon charging, which is one of the main risks in exploration especially in mature basins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overcoming Deployment and Retrieval Challenges with Killed Well Cable Deployed Electric Submersible Pump Systems – Lessons Learned from Five Years of CDESP History Predicting of the Geometrical Behavior of Formations in Subsurface Based on the Analysis of LWD/MWD Data While Drilling Horizontal Wells Nano Chemical Design for Excessive Water Production Control in Taq Taq Oil Field Understanding of Vertical and Horizontal Pressure Barriers in the Naturally Fractured Carbonate Field A Case Study of High-Rate Multistage Hydraulic Fracturing in Petrikov Horizon of the Pripyat Trough
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1