在堆栈溢出上分组Android标签同义词

S. Beyer, M. Pinzger
{"title":"在堆栈溢出上分组Android标签同义词","authors":"S. Beyer, M. Pinzger","doi":"10.1145/2901739.2901750","DOIUrl":null,"url":null,"abstract":"On Stack Overflow, more than 38,000 diverse tags are used to classify posts. The Stack Overflow community provides tag synonyms to reduce the number of tags that have the same or similar meaning. In our previous research, we used those synonym pairs to derive a number of strategies to create tag synonyms automatically.In this work, we continue this line of research and present an approach to group tag synonyms to meaningful topics. We represent our synonyms as directed, weighted graphs, and investigate several graph community detection algorithms to build meaningful groups of tags, also called tag communities.We apply our approach to the tags obtained from Android-related Stack Overflow posts and evaluate the resulting tag communities quantitatively with various community metrics. In addition, we evaluate our approach qualitatively through a manual inspection and comparison of a random sample of tag communities. Our results show that we can cluster the Android tags to 2,481 meaningful tag communities. We also show how these tag communities can be used to derive trends of topics of Android-related questions on Stack Overflow.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"16 1","pages":"430-440"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Grouping Android Tag Synonyms on Stack Overflow\",\"authors\":\"S. Beyer, M. Pinzger\",\"doi\":\"10.1145/2901739.2901750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On Stack Overflow, more than 38,000 diverse tags are used to classify posts. The Stack Overflow community provides tag synonyms to reduce the number of tags that have the same or similar meaning. In our previous research, we used those synonym pairs to derive a number of strategies to create tag synonyms automatically.In this work, we continue this line of research and present an approach to group tag synonyms to meaningful topics. We represent our synonyms as directed, weighted graphs, and investigate several graph community detection algorithms to build meaningful groups of tags, also called tag communities.We apply our approach to the tags obtained from Android-related Stack Overflow posts and evaluate the resulting tag communities quantitatively with various community metrics. In addition, we evaluate our approach qualitatively through a manual inspection and comparison of a random sample of tag communities. Our results show that we can cluster the Android tags to 2,481 meaningful tag communities. We also show how these tag communities can be used to derive trends of topics of Android-related questions on Stack Overflow.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"16 1\",\"pages\":\"430-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901739.2901750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901739.2901750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在Stack Overflow上,有超过38,000个不同的标签用于对帖子进行分类。Stack Overflow社区提供标签同义词,以减少具有相同或相似含义的标签的数量。在我们之前的研究中,我们使用这些同义词对派生出许多自动创建标签同义词的策略。在这项工作中,我们继续这条研究路线,并提出了一种将标签同义词分组到有意义主题的方法。我们将同义词表示为有向加权图,并研究了几种图社区检测算法来构建有意义的标签组,也称为标签社区。我们将我们的方法应用于从android相关Stack Overflow帖子中获得的标签,并使用各种社区指标定量评估所产生的标签社区。此外,我们通过人工检查和标签社区随机样本的比较来定性地评估我们的方法。我们的结果表明,我们可以将Android标签聚类到2481个有意义的标签社区。我们还展示了如何使用这些标签社区来派生Stack Overflow上android相关问题的主题趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grouping Android Tag Synonyms on Stack Overflow
On Stack Overflow, more than 38,000 diverse tags are used to classify posts. The Stack Overflow community provides tag synonyms to reduce the number of tags that have the same or similar meaning. In our previous research, we used those synonym pairs to derive a number of strategies to create tag synonyms automatically.In this work, we continue this line of research and present an approach to group tag synonyms to meaningful topics. We represent our synonyms as directed, weighted graphs, and investigate several graph community detection algorithms to build meaningful groups of tags, also called tag communities.We apply our approach to the tags obtained from Android-related Stack Overflow posts and evaluate the resulting tag communities quantitatively with various community metrics. In addition, we evaluate our approach qualitatively through a manual inspection and comparison of a random sample of tag communities. Our results show that we can cluster the Android tags to 2,481 meaningful tag communities. We also show how these tag communities can be used to derive trends of topics of Android-related questions on Stack Overflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSR '20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020 Who you gonna call?: analyzing web requests in Android applications Cena słońca w projektowaniu architektonicznym Multi-extract and Multi-level Dataset of Mozilla Issue Tracking History Interactive Exploration of Developer Interaction Traces using a Hidden Markov Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1