CheckShake:使用基于集成学习的梯度增强被动检测Wi-Fi安全握手中的异常

Anand Agrawal, Urbi Chatterjee, R. Maiti
{"title":"CheckShake:使用基于集成学习的梯度增强被动检测Wi-Fi安全握手中的异常","authors":"Anand Agrawal, Urbi Chatterjee, R. Maiti","doi":"10.1109/tdsc.2023.3236355","DOIUrl":null,"url":null,"abstract":"Recently, a number of attacks have been demonstrated (like key reinstallation attack, called KRACK) on WPA2 protocol suite in Wi-Fi WLAN, for which a patching is often challenging. In this article, we design and implement a system, called CheckShake, to passively detect anomalies in the handshake of Wi-Fi security protocols, in particular WPA2, between a client and an AP using COTS radios. Our proposed system works without decrypting any traffic and sniffing on multiple channels in parallel. It uses a state machine model for grouping Wi-Fi handshake packets and then perform deep packet inspection to identify the symptoms of the anomaly in specific stages of a handshake session. Our implementation of CheckShake does not require any modification to the firmware of the client or the AP or the COTS devices, it only requires to be physically placed within the range of the AP and its clients. We use both the publicly available dataset and our own data set for performance analysis of CheckShake. Using gradient boosting-based supervised machine learning (ML) models, we show that an accuracy around 98.50% with no false positive can be achieved using CheckShake in open sourced data that has non-zero probability of missing packets per group of packets.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"65-66 1","pages":"4868-4880"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CheckShake: Passively Detecting Anomaly in Wi-Fi Security Handshake using Gradient Boosting based Ensemble Learning\",\"authors\":\"Anand Agrawal, Urbi Chatterjee, R. Maiti\",\"doi\":\"10.1109/tdsc.2023.3236355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a number of attacks have been demonstrated (like key reinstallation attack, called KRACK) on WPA2 protocol suite in Wi-Fi WLAN, for which a patching is often challenging. In this article, we design and implement a system, called CheckShake, to passively detect anomalies in the handshake of Wi-Fi security protocols, in particular WPA2, between a client and an AP using COTS radios. Our proposed system works without decrypting any traffic and sniffing on multiple channels in parallel. It uses a state machine model for grouping Wi-Fi handshake packets and then perform deep packet inspection to identify the symptoms of the anomaly in specific stages of a handshake session. Our implementation of CheckShake does not require any modification to the firmware of the client or the AP or the COTS devices, it only requires to be physically placed within the range of the AP and its clients. We use both the publicly available dataset and our own data set for performance analysis of CheckShake. Using gradient boosting-based supervised machine learning (ML) models, we show that an accuracy around 98.50% with no false positive can be achieved using CheckShake in open sourced data that has non-zero probability of missing packets per group of packets.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"65-66 1\",\"pages\":\"4868-4880\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2023.3236355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3236355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,在Wi-Fi WLAN的WPA2协议套件上出现了许多攻击(如密钥重装攻击,称为KRACK)。由于物联网、工业系统和医疗设备中WLAN设备的固件通常没有打补丁,因此检测和预防此类攻击具有挑战性。在本文中,我们设计并实现了一个称为CheckShake的系统,用于被动检测Wi-Fi安全协议握手中的异常情况,特别是使用COTS无线电在客户端和接入点之间的WPA2。我们提出的系统在不解密任何流量的情况下工作。它被动地对相邻的多个无线信道进行并行监控,并使用状态机模型对攻击进行表征和检测。特别是,我们开发了一个状态机模型,用于分组Wi-Fi握手数据包,然后执行深度数据包检查,以识别握手会话特定阶段的异常症状。我们的CheckShake实现不需要对客户端或接入点或COTS设备的固件进行任何修改,它只需要在物理上放置在接入点及其客户端范围内。我们使用公开可用的数据集和我们自己的数据集来进行CheckShake的性能分析。使用基于梯度增强的监督机器学习模型,我们发现使用CheckShake可以实现约93.39%的准确率和5.08%的假阳性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CheckShake: Passively Detecting Anomaly in Wi-Fi Security Handshake using Gradient Boosting based Ensemble Learning
Recently, a number of attacks have been demonstrated (like key reinstallation attack, called KRACK) on WPA2 protocol suite in Wi-Fi WLAN, for which a patching is often challenging. In this article, we design and implement a system, called CheckShake, to passively detect anomalies in the handshake of Wi-Fi security protocols, in particular WPA2, between a client and an AP using COTS radios. Our proposed system works without decrypting any traffic and sniffing on multiple channels in parallel. It uses a state machine model for grouping Wi-Fi handshake packets and then perform deep packet inspection to identify the symptoms of the anomaly in specific stages of a handshake session. Our implementation of CheckShake does not require any modification to the firmware of the client or the AP or the COTS devices, it only requires to be physically placed within the range of the AP and its clients. We use both the publicly available dataset and our own data set for performance analysis of CheckShake. Using gradient boosting-based supervised machine learning (ML) models, we show that an accuracy around 98.50% with no false positive can be achieved using CheckShake in open sourced data that has non-zero probability of missing packets per group of packets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronous Distributed Key Generation without Broadcasts Optimizing and Implementing Fischlin's Transform for UC-Secure Zero-Knowledge A Long Tweak Goes a Long Way: High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers Efficient isochronous fixed-weight sampling with applications to NTRU Decentralized Multi-Client Functional Encryption with Strong Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1