{"title":"基于机器学习的白龙江流域五斗区地质灾害易感性评价混合模型","authors":"Zhijun Wang, Zhuofan Chen, Ke Ma, Zuoxiong Zhang","doi":"10.3390/geohazards4020010","DOIUrl":null,"url":null,"abstract":"In the mapping and assessment of mountain hazard susceptibility using machine learning models, the selection of model parameters plays a critical role in the accuracy of predicting models. In this study, we present a novel approach for developing a prediction model based on random forest (RF) by incorporating ensembles of hyperparameter optimization. The performance of the RF model is enhanced by employing a Bayesian optimization (Bayes) method and a genetic algorithm (GA) and verified in the Wudu section of the Bailong River basin, China, which is a typical hazard-prone, mountainous area. We identified fourteen influential factors based on field measurements to describe the “avalanche–landslide–debris flow” hazard chains in the study area. We constructed training (80%) and validation (20%) datasets for 378 hazard sites. The performance of the models was assessed using standard statistical metrics, including recall, confusion matrix, accuracy, F1, precision, and area under the operating characteristic curve (AUC), based on a multicollinearity analysis and Relief-F two-step evaluation. The results indicate that all three models, i.e., RF, GA-RF, and Bayes-RF, achieved good performance (AUC: 0.89~0.92). The Bayes-RF model outperformed the other two models (AUC = 0.92). Therefore, this model is highly accurate and robust for mountain hazard susceptibility assessment and is useful for the study area as well as other regions. Additionally, stakeholders can use the susceptibility map produced to guide mountain hazard prevention and control measures in the region.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"1 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning-Based Hybrid Modeling for Geological Hazard Susceptibility Assessment in Wudou District, Bailong River Basin, China\",\"authors\":\"Zhijun Wang, Zhuofan Chen, Ke Ma, Zuoxiong Zhang\",\"doi\":\"10.3390/geohazards4020010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the mapping and assessment of mountain hazard susceptibility using machine learning models, the selection of model parameters plays a critical role in the accuracy of predicting models. In this study, we present a novel approach for developing a prediction model based on random forest (RF) by incorporating ensembles of hyperparameter optimization. The performance of the RF model is enhanced by employing a Bayesian optimization (Bayes) method and a genetic algorithm (GA) and verified in the Wudu section of the Bailong River basin, China, which is a typical hazard-prone, mountainous area. We identified fourteen influential factors based on field measurements to describe the “avalanche–landslide–debris flow” hazard chains in the study area. We constructed training (80%) and validation (20%) datasets for 378 hazard sites. The performance of the models was assessed using standard statistical metrics, including recall, confusion matrix, accuracy, F1, precision, and area under the operating characteristic curve (AUC), based on a multicollinearity analysis and Relief-F two-step evaluation. The results indicate that all three models, i.e., RF, GA-RF, and Bayes-RF, achieved good performance (AUC: 0.89~0.92). The Bayes-RF model outperformed the other two models (AUC = 0.92). Therefore, this model is highly accurate and robust for mountain hazard susceptibility assessment and is useful for the study area as well as other regions. Additionally, stakeholders can use the susceptibility map produced to guide mountain hazard prevention and control measures in the region.\",\"PeriodicalId\":48524,\"journal\":{\"name\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geohazards4020010\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geohazards4020010","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Machine-Learning-Based Hybrid Modeling for Geological Hazard Susceptibility Assessment in Wudou District, Bailong River Basin, China
In the mapping and assessment of mountain hazard susceptibility using machine learning models, the selection of model parameters plays a critical role in the accuracy of predicting models. In this study, we present a novel approach for developing a prediction model based on random forest (RF) by incorporating ensembles of hyperparameter optimization. The performance of the RF model is enhanced by employing a Bayesian optimization (Bayes) method and a genetic algorithm (GA) and verified in the Wudu section of the Bailong River basin, China, which is a typical hazard-prone, mountainous area. We identified fourteen influential factors based on field measurements to describe the “avalanche–landslide–debris flow” hazard chains in the study area. We constructed training (80%) and validation (20%) datasets for 378 hazard sites. The performance of the models was assessed using standard statistical metrics, including recall, confusion matrix, accuracy, F1, precision, and area under the operating characteristic curve (AUC), based on a multicollinearity analysis and Relief-F two-step evaluation. The results indicate that all three models, i.e., RF, GA-RF, and Bayes-RF, achieved good performance (AUC: 0.89~0.92). The Bayes-RF model outperformed the other two models (AUC = 0.92). Therefore, this model is highly accurate and robust for mountain hazard susceptibility assessment and is useful for the study area as well as other regions. Additionally, stakeholders can use the susceptibility map produced to guide mountain hazard prevention and control measures in the region.
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.