使用智能系统的社会转型建模

IF 2.6 3区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Systems Science & Complexity Pub Date : 2008-10-11 DOI:10.1109/CANS.2008.8
H. Owladeghaffari, W. Pedrycz, M. Sharifzadeh
{"title":"使用智能系统的社会转型建模","authors":"H. Owladeghaffari, W. Pedrycz, M. Sharifzadeh","doi":"10.1109/CANS.2008.8","DOIUrl":null,"url":null,"abstract":"In this study, we reproduce two new hybrid intelligent systems, involve three prominent intelligent computing and approximate reasoning methods: Self Organizing feature Map (SOM), Neuro-Fuzzy Inference System and Rough Set Theory (RST), called SONFIS and SORST. We show how our algorithms can be construed as a linkage of government-society (or any other similar systems) interactions, where government catches various states of behaviors: ldquosolid (absolute) or flexiblerdquo. So, transition of society, by changing of connectivity parameters (noise) from order to disorder is inferred.","PeriodicalId":50026,"journal":{"name":"Journal of Systems Science & Complexity","volume":"28 1","pages":"3-10"},"PeriodicalIF":2.6000,"publicationDate":"2008-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of Social Transitions Using Intelligent Systems\",\"authors\":\"H. Owladeghaffari, W. Pedrycz, M. Sharifzadeh\",\"doi\":\"10.1109/CANS.2008.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we reproduce two new hybrid intelligent systems, involve three prominent intelligent computing and approximate reasoning methods: Self Organizing feature Map (SOM), Neuro-Fuzzy Inference System and Rough Set Theory (RST), called SONFIS and SORST. We show how our algorithms can be construed as a linkage of government-society (or any other similar systems) interactions, where government catches various states of behaviors: ldquosolid (absolute) or flexiblerdquo. So, transition of society, by changing of connectivity parameters (noise) from order to disorder is inferred.\",\"PeriodicalId\":50026,\"journal\":{\"name\":\"Journal of Systems Science & Complexity\",\"volume\":\"28 1\",\"pages\":\"3-10\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2008-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Science & Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1109/CANS.2008.8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science & Complexity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1109/CANS.2008.8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们重现了两个新的混合智能系统,涉及三种著名的智能计算和近似推理方法:自组织特征映射(SOM),神经模糊推理系统和粗糙集理论(RST),称为SONFIS和SORST。我们展示了如何将我们的算法解释为政府-社会(或任何其他类似系统)相互作用的联系,其中政府捕获各种行为状态:不稳定(绝对)或灵活状态。因此,通过连接参数(噪声)从有序到无序的变化,可以推断出社会的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of Social Transitions Using Intelligent Systems
In this study, we reproduce two new hybrid intelligent systems, involve three prominent intelligent computing and approximate reasoning methods: Self Organizing feature Map (SOM), Neuro-Fuzzy Inference System and Rough Set Theory (RST), called SONFIS and SORST. We show how our algorithms can be construed as a linkage of government-society (or any other similar systems) interactions, where government catches various states of behaviors: ldquosolid (absolute) or flexiblerdquo. So, transition of society, by changing of connectivity parameters (noise) from order to disorder is inferred.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Science & Complexity
Journal of Systems Science & Complexity 数学-数学跨学科应用
CiteScore
3.80
自引率
9.50%
发文量
90
审稿时长
6-12 weeks
期刊介绍: The Journal of Systems Science and Complexity is dedicated to publishing high quality papers on mathematical theories, methodologies, and applications of systems science and complexity science. It encourages fundamental research into complex systems and complexity and fosters cross-disciplinary approaches to elucidate the common mathematical methods that arise in natural, artificial, and social systems. Topics covered are: complex systems, systems control, operations research for complex systems, economic and financial systems analysis, statistics and data science, computer mathematics, systems security, coding theory and crypto-systems, other topics related to systems science.
期刊最新文献
Number of Solitons Emerged in the Initial Profile of Shallow Water Using Convolutional Neural Networks Pre-Training Physics-Informed Neural Network with Mixed Sampling and Its Application in High-Dimensional Systems A New Method for Solving Nonlinear Partial Differential Equations Based on Liquid Time-Constant Networks Physics-Informed Neural Networks with Two Weighted Loss Function Methods for Interactions of Two-Dimensional Oceanic Internal Solitary Waves Parallel Physics-Informed Neural Networks Method with Regularization Strategies for the Forward-Inverse Problems of the Variable Coefficient Modified KdV Equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1